ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.12213
  4. Cited By
ECO-TR: Efficient Correspondences Finding Via Coarse-to-Fine Refinement

ECO-TR: Efficient Correspondences Finding Via Coarse-to-Fine Refinement

25 September 2022
Donglin Tan
Jiangjiang Liu
Xingyu Chen
Chao Chen
Ruixin Zhang
Yunhang Shen
Shouhong Ding
Rongrong Ji
ArXivPDFHTML

Papers citing "ECO-TR: Efficient Correspondences Finding Via Coarse-to-Fine Refinement"

2 / 2 papers shown
Title
ETO:Efficient Transformer-based Local Feature Matching by Organizing Multiple Homography Hypotheses
ETO:Efficient Transformer-based Local Feature Matching by Organizing Multiple Homography Hypotheses
Junjie Ni
Guofeng Zhang
Guanglin Li
Yijin Li
Xinyang Liu
Zhaoyang Huang
Hujun Bao
ViT
54
2
0
30 Oct 2024
Learning Accurate Dense Correspondences and When to Trust Them
Learning Accurate Dense Correspondences and When to Trust Them
Prune Truong
Martin Danelljan
Luc Van Gool
Radu Timofte
3DH
3DPC
64
125
0
05 Jan 2021
1