ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.13083
  4. Cited By
Why neural networks find simple solutions: the many regularizers of
  geometric complexity

Why neural networks find simple solutions: the many regularizers of geometric complexity

27 September 2022
Benoit Dherin
Michael Munn
M. Rosca
David Barrett
ArXivPDFHTML

Papers citing "Why neural networks find simple solutions: the many regularizers of geometric complexity"

5 / 5 papers shown
Title
Neural Redshift: Random Networks are not Random Functions
Neural Redshift: Random Networks are not Random Functions
Damien Teney
A. Nicolicioiu
Valentin Hartmann
Ehsan Abbasnejad
75
18
0
04 Mar 2024
Deep Double Descent via Smooth Interpolation
Deep Double Descent via Smooth Interpolation
Matteo Gamba
Erik Englesson
Marten Bjorkman
Hossein Azizpour
46
11
0
21 Sep 2022
Stochastic Training is Not Necessary for Generalization
Stochastic Training is Not Necessary for Generalization
Jonas Geiping
Micah Goldblum
Phillip E. Pope
Michael Moeller
Tom Goldstein
76
67
0
29 Sep 2021
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
223
2,990
0
24 Nov 2016
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
270
2,696
0
15 Sep 2016
1