Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2209.14074
Cited By
Recipro-CAM: Fast gradient-free visual explanations for convolutional neural networks
28 September 2022
Seokhyun Byun
Won-Jo Lee
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Recipro-CAM: Fast gradient-free visual explanations for convolutional neural networks"
5 / 5 papers shown
Title
Top-GAP: Integrating Size Priors in CNNs for more Interpretability, Robustness, and Bias Mitigation
Lars Nieradzik
Henrike Stephani
Janis Keuper
FAtt
AAML
36
0
0
07 Sep 2024
ViT-ReciproCAM: Gradient and Attention-Free Visual Explanations for Vision Transformer
Seokhyun Byun
Won-Jo Lee
FAtt
18
4
0
04 Oct 2023
Revisiting The Evaluation of Class Activation Mapping for Explainability: A Novel Metric and Experimental Analysis
Samuele Poppi
Marcella Cornia
Lorenzo Baraldi
Rita Cucchiara
FAtt
125
33
0
20 Apr 2021
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Z. Tu
Kaiming He
297
10,216
0
16 Nov 2016
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
296
39,194
0
01 Sep 2014
1