ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.14974
  4. Cited By
Greybox XAI: a Neural-Symbolic learning framework to produce
  interpretable predictions for image classification

Greybox XAI: a Neural-Symbolic learning framework to produce interpretable predictions for image classification

26 September 2022
Adrien Bennetot
Gianni Franchi
Javier Del Ser
Raja Chatila
Natalia Díaz Rodríguez
    AAML
ArXivPDFHTML

Papers citing "Greybox XAI: a Neural-Symbolic learning framework to produce interpretable predictions for image classification"

6 / 6 papers shown
Title
Exploring the Trade-off between Plausibility, Change Intensity and
  Adversarial Power in Counterfactual Explanations using Multi-objective
  Optimization
Exploring the Trade-off between Plausibility, Change Intensity and Adversarial Power in Counterfactual Explanations using Multi-objective Optimization
Javier Del Ser
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Francisco Herrera
Andreas Holzinger
AAML
36
4
0
20 May 2022
MLP-Mixer: An all-MLP Architecture for Vision
MLP-Mixer: An all-MLP Architecture for Vision
Ilya O. Tolstikhin
N. Houlsby
Alexander Kolesnikov
Lucas Beyer
Xiaohua Zhai
...
Andreas Steiner
Daniel Keysers
Jakob Uszkoreit
Mario Lucic
Alexey Dosovitskiy
239
2,554
0
04 May 2021
EXplainable Neural-Symbolic Learning (X-NeSyL) methodology to fuse deep
  learning representations with expert knowledge graphs: the MonuMAI cultural
  heritage use case
EXplainable Neural-Symbolic Learning (X-NeSyL) methodology to fuse deep learning representations with expert knowledge graphs: the MonuMAI cultural heritage use case
Natalia Díaz Rodríguez
Alberto Lamas
Jules Sanchez
Gianni Franchi
Ivan Donadello
S. Tabik
David Filliat
P. Cruz
Rosana Montes
Francisco Herrera
45
60
0
24 Apr 2021
Language Models as Knowledge Bases?
Language Models as Knowledge Bases?
Fabio Petroni
Tim Rocktaschel
Patrick Lewis
A. Bakhtin
Yuxiang Wu
Alexander H. Miller
Sebastian Riedel
KELM
AI4MH
393
2,216
0
03 Sep 2019
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
228
2,231
0
24 Jun 2017
Logic Tensor Networks for Semantic Image Interpretation
Logic Tensor Networks for Semantic Image Interpretation
Ivan Donadello
Luciano Serafini
Artur Garcez
51
208
0
24 May 2017
1