ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.01787
  4. Cited By
Rethinking Lipschitz Neural Networks and Certified Robustness: A Boolean
  Function Perspective

Rethinking Lipschitz Neural Networks and Certified Robustness: A Boolean Function Perspective

4 October 2022
Bohang Zhang
Du Jiang
Di He
Liwei Wang
    OOD
ArXivPDFHTML

Papers citing "Rethinking Lipschitz Neural Networks and Certified Robustness: A Boolean Function Perspective"

8 / 8 papers shown
Title
TAROT: Towards Essentially Domain-Invariant Robustness with Theoretical Justification
TAROT: Towards Essentially Domain-Invariant Robustness with Theoretical Justification
Dongyoon Yang
Jihu Lee
Yongdai Kim
24
0
0
10 May 2025
On Using Certified Training towards Empirical Robustness
On Using Certified Training towards Empirical Robustness
Alessandro De Palma
Serge Durand
Zakaria Chihani
François Terrier
Caterina Urban
OOD
AAML
33
1
0
02 Oct 2024
Physics-Driven AI Correction in Laser Absorption Sensing Quantification
Physics-Driven AI Correction in Laser Absorption Sensing Quantification
Ruiyuan Kang
P. Liatsis
Meixia Geng
Qingjie Yang
30
0
0
20 Aug 2024
Raising the Bar for Certified Adversarial Robustness with Diffusion
  Models
Raising the Bar for Certified Adversarial Robustness with Diffusion Models
Thomas Altstidl
David Dobre
Björn Eskofier
Gauthier Gidel
Leo Schwinn
DiffM
20
7
0
17 May 2023
Certified Training: Small Boxes are All You Need
Certified Training: Small Boxes are All You Need
Mark Niklas Muller
Franziska Eckert
Marc Fischer
Martin Vechev
AAML
18
45
0
10 Oct 2022
Improved deterministic l2 robustness on CIFAR-10 and CIFAR-100
Improved deterministic l2 robustness on CIFAR-10 and CIFAR-100
Sahil Singla
Surbhi Singla
S. Feizi
AAML
30
54
0
05 Aug 2021
Globally-Robust Neural Networks
Globally-Robust Neural Networks
Klas Leino
Zifan Wang
Matt Fredrikson
AAML
OOD
80
125
0
16 Feb 2021
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
222
1,832
0
03 Feb 2017
1