Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.01787
Cited By
Rethinking Lipschitz Neural Networks and Certified Robustness: A Boolean Function Perspective
4 October 2022
Bohang Zhang
Du Jiang
Di He
Liwei Wang
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Rethinking Lipschitz Neural Networks and Certified Robustness: A Boolean Function Perspective"
8 / 8 papers shown
Title
TAROT: Towards Essentially Domain-Invariant Robustness with Theoretical Justification
Dongyoon Yang
Jihu Lee
Yongdai Kim
24
0
0
10 May 2025
On Using Certified Training towards Empirical Robustness
Alessandro De Palma
Serge Durand
Zakaria Chihani
François Terrier
Caterina Urban
OOD
AAML
33
1
0
02 Oct 2024
Physics-Driven AI Correction in Laser Absorption Sensing Quantification
Ruiyuan Kang
P. Liatsis
Meixia Geng
Qingjie Yang
32
0
0
20 Aug 2024
Raising the Bar for Certified Adversarial Robustness with Diffusion Models
Thomas Altstidl
David Dobre
Björn Eskofier
Gauthier Gidel
Leo Schwinn
DiffM
20
7
0
17 May 2023
Certified Training: Small Boxes are All You Need
Mark Niklas Muller
Franziska Eckert
Marc Fischer
Martin Vechev
AAML
18
45
0
10 Oct 2022
Improved deterministic l2 robustness on CIFAR-10 and CIFAR-100
Sahil Singla
Surbhi Singla
S. Feizi
AAML
30
54
0
05 Aug 2021
Globally-Robust Neural Networks
Klas Leino
Zifan Wang
Matt Fredrikson
AAML
OOD
80
125
0
16 Feb 2021
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
222
1,832
0
03 Feb 2017
1