ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.01820
  4. Cited By
MOAT: Alternating Mobile Convolution and Attention Brings Strong Vision
  Models

MOAT: Alternating Mobile Convolution and Attention Brings Strong Vision Models

4 October 2022
Chenglin Yang
Siyuan Qiao
Qihang Yu
Xiaoding Yuan
Yukun Zhu
Alan Yuille
Hartwig Adam
Liang-Chieh Chen
    ViT
    MoE
ArXivPDFHTML

Papers citing "MOAT: Alternating Mobile Convolution and Attention Brings Strong Vision Models"

3 / 53 papers shown
Title
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
242
35,884
0
25 Aug 2016
Semantic Understanding of Scenes through the ADE20K Dataset
Semantic Understanding of Scenes through the ADE20K Dataset
Bolei Zhou
Hang Zhao
Xavier Puig
Tete Xiao
Sanja Fidler
Adela Barriuso
Antonio Torralba
SSeg
243
1,817
0
18 Aug 2016
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
279
39,083
0
01 Sep 2014
Previous
12