Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.04995
Cited By
FEAMOE: Fair, Explainable and Adaptive Mixture of Experts
10 October 2022
Shubham Sharma
Jette Henderson
Joydeep Ghosh
FedML
MoE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"FEAMOE: Fair, Explainable and Adaptive Mixture of Experts"
5 / 5 papers shown
Title
Fair-MoE: Fairness-Oriented Mixture of Experts in Vision-Language Models
Peiran Wang
Linjie Tong
Jiaxiang Liu
Zuozhu Liu
VLM
MoE
39
0
0
10 Feb 2025
REFRESH: Responsible and Efficient Feature Reselection Guided by SHAP Values
Shubham Sharma
Sanghamitra Dutta
Emanuele Albini
Freddy Lecue
Daniele Magazzeni
Manuela Veloso
27
1
0
13 Mar 2024
Fair Wasserstein Coresets
Zikai Xiong
Niccolò Dalmasso
Shubham Sharma
Freddy Lecue
Daniele Magazzeni
Vamsi K. Potluru
T. Balch
Manuela Veloso
16
2
0
09 Nov 2023
Rethinking Log Odds: Linear Probability Modelling and Expert Advice in Interpretable Machine Learning
Danial Dervovic
Nicolas Marchesotti
Freddy Lecue
Daniele Magazzeni
21
0
0
11 Nov 2022
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
294
4,143
0
23 Aug 2019
1