ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.04995
  4. Cited By
FEAMOE: Fair, Explainable and Adaptive Mixture of Experts

FEAMOE: Fair, Explainable and Adaptive Mixture of Experts

10 October 2022
Shubham Sharma
Jette Henderson
Joydeep Ghosh
    FedML
    MoE
ArXivPDFHTML

Papers citing "FEAMOE: Fair, Explainable and Adaptive Mixture of Experts"

5 / 5 papers shown
Title
Fair-MoE: Fairness-Oriented Mixture of Experts in Vision-Language Models
Peiran Wang
Linjie Tong
Jiaxiang Liu
Zuozhu Liu
VLM
MoE
39
0
0
10 Feb 2025
REFRESH: Responsible and Efficient Feature Reselection Guided by SHAP
  Values
REFRESH: Responsible and Efficient Feature Reselection Guided by SHAP Values
Shubham Sharma
Sanghamitra Dutta
Emanuele Albini
Freddy Lecue
Daniele Magazzeni
Manuela Veloso
27
1
0
13 Mar 2024
Fair Wasserstein Coresets
Fair Wasserstein Coresets
Zikai Xiong
Niccolò Dalmasso
Shubham Sharma
Freddy Lecue
Daniele Magazzeni
Vamsi K. Potluru
T. Balch
Manuela Veloso
16
2
0
09 Nov 2023
Rethinking Log Odds: Linear Probability Modelling and Expert Advice in
  Interpretable Machine Learning
Rethinking Log Odds: Linear Probability Modelling and Expert Advice in Interpretable Machine Learning
Danial Dervovic
Nicolas Marchesotti
Freddy Lecue
Daniele Magazzeni
21
0
0
11 Nov 2022
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
294
4,143
0
23 Aug 2019
1