ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.05775
  4. Cited By
C-Mixup: Improving Generalization in Regression

C-Mixup: Improving Generalization in Regression

11 October 2022
Huaxiu Yao
Yiping Wang
Linjun Zhang
James Y. Zou
Chelsea Finn
    UQCV
    OOD
ArXivPDFHTML

Papers citing "C-Mixup: Improving Generalization in Regression"

15 / 15 papers shown
Title
Sample Selection via Contrastive Fragmentation for Noisy Label Regression
Sample Selection via Contrastive Fragmentation for Noisy Label Regression
C. Kim
Sangwoo Moon
Jihwan Moon
Dongyeon Woo
Gunhee Kim
NoLa
52
0
0
25 Feb 2025
StarLKNet: Star Mixup with Large Kernel Networks for Palm Vein
  Identification
StarLKNet: Star Mixup with Large Kernel Networks for Palm Vein Identification
Xin Jin
Hongyu Zhu
M. El-Yacoubi
Hongchao Liao
Huafeng Qin
Yun Jiang
33
6
0
21 May 2024
Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift
Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift
Benjamin Eyre
Elliot Creager
David Madras
Antonio Torralba
Katherine Heller
OOD
OODD
23
1
0
29 Dec 2023
Tailoring Mixup to Data for Calibration
Tailoring Mixup to Data for Calibration
Quentin Bouniot
Pavlo Mozharovskyi
Florence dÁlché-Buc
53
1
0
02 Nov 2023
R-Mixup: Riemannian Mixup for Biological Networks
R-Mixup: Riemannian Mixup for Biological Networks
Xuan Kan
Zimu Li
Hejie Cui
Yue Yu
Ran Xu
Shaojun Yu
Zilong Zhang
Ying Guo
Carl Yang
25
6
0
05 Jun 2023
Improving Domain Generalization with Domain Relations
Improving Domain Generalization with Domain Relations
Huaxiu Yao
Xinyu Yang
Xinyi Pan
Shengchao Liu
Pang Wei Koh
Chelsea Finn
OOD
AI4CE
37
8
0
06 Feb 2023
Rank-N-Contrast: Learning Continuous Representations for Regression
Rank-N-Contrast: Learning Continuous Representations for Regression
Kaiwen Zha
Peng Cao
Jeany Son
Yuzhe Yang
Dina Katabi
CML
57
37
0
03 Oct 2022
Harnessing Hard Mixed Samples with Decoupled Regularizer
Harnessing Hard Mixed Samples with Decoupled Regularizer
Zicheng Liu
Siyuan Li
Ge Wang
Cheng Tan
Lirong Wu
Stan Z. Li
51
18
0
21 Mar 2022
Gradient Matching for Domain Generalization
Gradient Matching for Domain Generalization
Yuge Shi
Jeffrey S. Seely
Philip H. S. Torr
Siddharth Narayanaswamy
Awni Y. Hannun
Nicolas Usunier
Gabriel Synnaeve
OOD
205
291
0
20 Apr 2021
Co-Mixup: Saliency Guided Joint Mixup with Supermodular Diversity
Co-Mixup: Saliency Guided Joint Mixup with Supermodular Diversity
Jang-Hyun Kim
Wonho Choo
Hosan Jeong
Hyun Oh Song
195
176
0
05 Feb 2021
Improving Generalization in Reinforcement Learning with Mixture
  Regularization
Improving Generalization in Reinforcement Learning with Mixture Regularization
Kaixin Wang
Bingyi Kang
Jie Shao
Jiashi Feng
104
115
0
21 Oct 2020
Deep Domain-Adversarial Image Generation for Domain Generalisation
Deep Domain-Adversarial Image Generation for Domain Generalisation
Kaiyang Zhou
Yongxin Yang
Timothy M. Hospedales
Tao Xiang
OOD
204
402
0
12 Mar 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
898
0
02 Mar 2020
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness
  of MAML
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML
Aniruddh Raghu
M. Raghu
Samy Bengio
Oriol Vinyals
170
639
0
19 Sep 2019
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,109
0
06 Jun 2015
1