Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.05938
Cited By
Robust Models are less Over-Confident
12 October 2022
Julia Grabinski
Paul Gavrikov
J. Keuper
M. Keuper
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Robust Models are less Over-Confident"
8 / 8 papers shown
Title
FAIR-TAT: Improving Model Fairness Using Targeted Adversarial Training
Tejaswini Medi
Steffen Jung
M. Keuper
AAML
21
3
0
30 Oct 2024
Towards Certification of Uncertainty Calibration under Adversarial Attacks
Cornelius Emde
Francesco Pinto
Thomas Lukasiewicz
Philip H. S. Torr
Adel Bibi
AAML
30
0
0
22 May 2024
NoisyICL: A Little Noise in Model Parameters Calibrates In-context Learning
Yufeng Zhao
Yoshihiro Sakai
Naoya Inoue
18
3
0
08 Feb 2024
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
44
100
0
07 Oct 2021
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
207
668
0
19 Oct 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,635
0
05 Dec 2016
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
256
3,102
0
04 Nov 2016
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
244
35,884
0
25 Aug 2016
1