Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.09256
Cited By
On Uncertainty in Deep State Space Models for Model-Based Reinforcement Learning
17 October 2022
P. Becker
Gerhard Neumann
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On Uncertainty in Deep State Space Models for Model-Based Reinforcement Learning"
8 / 8 papers shown
Title
Uncertainty Representations in State-Space Layers for Deep Reinforcement Learning under Partial Observability
Carlos E. Luis
A. Bottero
Julia Vinogradska
Felix Berkenkamp
Jan Peters
78
1
0
20 Feb 2025
Adaptive World Models: Learning Behaviors by Latent Imagination Under Non-Stationarity
Emiliyan Gospodinov
Vaisakh Shaj
P. Becker
Stefan Geyer
Gerhard Neumann
34
0
0
02 Nov 2024
R-AIF: Solving Sparse-Reward Robotic Tasks from Pixels with Active Inference and World Models
Viet Dung Nguyen
Zhizhuo Yang
Christopher L. Buckley
Alexander Ororbia
31
2
0
21 Sep 2024
KalMamba: Towards Efficient Probabilistic State Space Models for RL under Uncertainty
P. Becker
Niklas Freymuth
Gerhard Neumann
Mamba
26
2
0
21 Jun 2024
Exploring the Potential of World Models for Anomaly Detection in Autonomous Driving
Daniel Bogdoll
Lukas Bosch
Tim Joseph
Helen Gremmelmaier
Yitian Yang
J. Marius Zöllner
22
5
0
10 Aug 2023
Combining Reconstruction and Contrastive Methods for Multimodal Representations in RL
P. Becker
Sebastian Mossburger
Fabian Otto
Gerhard Neumann
SSL
23
2
0
10 Feb 2023
Learning Dynamics Models for Model Predictive Agents
M. Lutter
Leonard Hasenclever
Arunkumar Byravan
Gabriel Dulac-Arnold
Piotr Trochim
N. Heess
J. Merel
Yuval Tassa
AI4CE
57
26
0
29 Sep 2021
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1