ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.09466
  4. Cited By
Anisotropic Multi-Scale Graph Convolutional Network for Dense Shape
  Correspondence

Anisotropic Multi-Scale Graph Convolutional Network for Dense Shape Correspondence

17 October 2022
Mohammad Farazi
Wenjie Zhu
Zhangsihao Yang
Yalin Wang
    3DPC
ArXivPDFHTML

Papers citing "Anisotropic Multi-Scale Graph Convolutional Network for Dense Shape Correspondence"

4 / 4 papers shown
Title
A Recipe for Geometry-Aware 3D Mesh Transformers
A Recipe for Geometry-Aware 3D Mesh Transformers
Mohammad Farazi
Yalin Wang
41
0
0
31 Oct 2024
CorrNet3D: Unsupervised End-to-end Learning of Dense Correspondence for
  3D Point Clouds
CorrNet3D: Unsupervised End-to-end Learning of Dense Correspondence for 3D Point Clouds
Yiming Zeng
Y. Qian
Zhiyu Zhu
Junhui Hou
Hui Yuan
Ying He
3DPC
94
65
0
31 Dec 2020
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
231
1,801
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
228
3,202
0
24 Nov 2016
1