ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.10514
  4. Cited By
The Future of Consumer Edge-AI Computing

The Future of Consumer Edge-AI Computing

19 October 2022
Stefanos Laskaridis
Stylianos I. Venieris
Alexandros Kouris
Rui Li
Nicholas D. Lane
ArXivPDFHTML

Papers citing "The Future of Consumer Edge-AI Computing"

12 / 12 papers shown
Title
MultiTASC++: A Continuously Adaptive Scheduler for Edge-Based
  Multi-Device Cascade Inference
MultiTASC++: A Continuously Adaptive Scheduler for Edge-Based Multi-Device Cascade Inference
Sokratis Nikolaidis
Stylianos I. Venieris
I. Venieris
81
0
0
05 Dec 2024
Profiling AI Models: Towards Efficient Computation Offloading in
  Heterogeneous Edge AI Systems
Profiling AI Models: Towards Efficient Computation Offloading in Heterogeneous Edge AI Systems
Juan Marcelo Parra Ullauri
Oscar Dilley
Hari Madhukumar
Dimitra Simeonidou
28
2
0
30 Oct 2024
Semantic Successive Refinement: A Generative AI-aided Semantic
  Communication Framework
Semantic Successive Refinement: A Generative AI-aided Semantic Communication Framework
Kexin Zhang
Lixin Li
Wensheng Lin
Yuna Yan
Rui Li
Wenchi Cheng
Zhu Han
DiffM
22
4
0
31 Jul 2024
MELTing point: Mobile Evaluation of Language Transformers
MELTing point: Mobile Evaluation of Language Transformers
Stefanos Laskaridis
Kleomenis Katevas
Lorenzo Minto
Hamed Haddadi
27
20
0
19 Mar 2024
Maestro: Uncovering Low-Rank Structures via Trainable Decomposition
Maestro: Uncovering Low-Rank Structures via Trainable Decomposition
Samuel Horváth
Stefanos Laskaridis
Shashank Rajput
Hongyi Wang
BDL
26
4
0
28 Aug 2023
MultiTASC: A Multi-Tenancy-Aware Scheduler for Cascaded DNN Inference at
  the Consumer Edge
MultiTASC: A Multi-Tenancy-Aware Scheduler for Cascaded DNN Inference at the Consumer Edge
Sokratis Nikolaidis
Stylianos I. Venieris
I. Venieris
16
2
0
22 Jun 2023
Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
  Networks on Edge NPUs
Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural Networks on Edge NPUs
Alexandros Kouris
Stylianos I. Venieris
Stefanos Laskaridis
Nicholas D. Lane
30
8
0
27 Sep 2022
Federated Active Learning (F-AL): an Efficient Annotation Strategy for
  Federated Learning
Federated Active Learning (F-AL): an Efficient Annotation Strategy for Federated Learning
J. Ahn
Yeeun Ma
Seoyun Park
Cheolwoo You
FedML
30
21
0
01 Feb 2022
Smart at what cost? Characterising Mobile Deep Neural Networks in the
  wild
Smart at what cost? Characterising Mobile Deep Neural Networks in the wild
Mario Almeida
Stefanos Laskaridis
Abhinav Mehrotra
L. Dudziak
Ilias Leontiadis
Nicholas D. Lane
HAI
95
44
0
28 Sep 2021
FjORD: Fair and Accurate Federated Learning under heterogeneous targets
  with Ordered Dropout
FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout
Samuel Horváth
Stefanos Laskaridis
Mario Almeida
Ilias Leondiadis
Stylianos I. Venieris
Nicholas D. Lane
176
267
0
26 Feb 2021
CaPC Learning: Confidential and Private Collaborative Learning
CaPC Learning: Confidential and Private Collaborative Learning
Christopher A. Choquette-Choo
Natalie Dullerud
Adam Dziedzic
Yunxiang Zhang
S. Jha
Nicolas Papernot
Xiao Wang
FedML
59
57
0
09 Feb 2021
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
948
20,471
0
17 Apr 2017
1