ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.11029
12
6

DeepRING: Learning Roto-translation Invariant Representation for LiDAR based Place Recognition

20 October 2022
Shan Lu
Xuecheng Xu
Li Tang
R. Xiong
Yue Wang
    3DPC
ArXivPDFHTML
Abstract

LiDAR based place recognition is popular for loop closure detection and re-localization. In recent years, deep learning brings improvements to place recognition by learnable feature extraction. However, these methods degenerate when the robot re-visits previous places with large perspective difference. To address the challenge, we propose DeepRING to learn the roto-translation invariant representation from LiDAR scan, so that robot visits the same place with different perspective can have similar representations. There are two keys in DeepRING: the feature is extracted from sinogram, and the feature is aggregated by magnitude spectrum. The two steps keeps the final representation with both discrimination and roto-translation invariance. Moreover, we state the place recognition as a one-shot learning problem with each place being a class, leveraging relation learning to build representation similarity. Substantial experiments are carried out on public datasets, validating the effectiveness of each proposed component, and showing that DeepRING outperforms the comparative methods, especially in dataset level generalization.

View on arXiv
Comments on this paper