Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.11292
Cited By
Late Prompt Tuning: A Late Prompt Could Be Better Than Many Prompts
20 October 2022
Xiangyang Liu
Tianxiang Sun
Xuanjing Huang
Xipeng Qiu
VLM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Late Prompt Tuning: A Late Prompt Could Be Better Than Many Prompts"
8 / 8 papers shown
Title
Parameter-Efficient Fine-Tuning in Large Models: A Survey of Methodologies
L. Wang
Sheng Chen
Linnan Jiang
Shu Pan
Runze Cai
Sen Yang
Fei Yang
44
3
0
24 Oct 2024
LiST: Lite Prompted Self-training Makes Parameter-Efficient Few-shot Learners
Yaqing Wang
Subhabrata Mukherjee
Xiaodong Liu
Jing Gao
Ahmed Hassan Awadallah
Jianfeng Gao
VLM
BDL
38
10
0
12 Oct 2021
Paradigm Shift in Natural Language Processing
Tianxiang Sun
Xiangyang Liu
Xipeng Qiu
Xuanjing Huang
109
82
0
26 Sep 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
278
3,784
0
18 Apr 2021
Beyond Fully-Connected Layers with Quaternions: Parameterization of Hypercomplex Multiplications with
1
/
n
1/n
1/
n
Parameters
Aston Zhang
Yi Tay
Shuai Zhang
Alvin Chan
A. Luu
S. Hui
Jie Fu
MQ
163
83
0
17 Feb 2021
Making Pre-trained Language Models Better Few-shot Learners
Tianyu Gao
Adam Fisch
Danqi Chen
241
1,898
0
31 Dec 2020
Pre-trained Models for Natural Language Processing: A Survey
Xipeng Qiu
Tianxiang Sun
Yige Xu
Yunfan Shao
Ning Dai
Xuanjing Huang
LM&MA
VLM
229
1,281
0
18 Mar 2020
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
294
6,927
0
20 Apr 2018
1