Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.12089
Cited By
A Survey on Graph Counterfactual Explanations: Definitions, Methods, Evaluation, and Research Challenges
21 October 2022
Mario Alfonso Prado-Romero
Bardh Prenkaj
Giovanni Stilo
F. Giannotti
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Survey on Graph Counterfactual Explanations: Definitions, Methods, Evaluation, and Research Challenges"
8 / 8 papers shown
Title
When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook
Wenzhao Jiang
Hao Liu
Hui Xiong
CML
AI4CE
16
2
0
19 Dec 2023
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
Ana Lucic
Maartje ter Hoeve
Gabriele Tolomei
Maarten de Rijke
Fabrizio Silvestri
99
87
0
05 Feb 2021
Fairness in Machine Learning
L. Oneto
Silvia Chiappa
FaML
225
485
0
31 Dec 2020
Explainability in Graph Neural Networks: A Taxonomic Survey
Hao Yuan
Haiyang Yu
Shurui Gui
Shuiwang Ji
156
463
0
31 Dec 2020
Multi-scale Attributed Node Embedding
Benedek Rozemberczki
Carl Allen
Rik Sarkar
GNN
139
828
0
28 Sep 2019
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
283
4,143
0
23 Aug 2019
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
152
1,748
0
02 Mar 2017
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
231
1,801
0
25 Nov 2016
1