ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.12196
  4. Cited By
Augmentation by Counterfactual Explanation -- Fixing an Overconfident
  Classifier

Augmentation by Counterfactual Explanation -- Fixing an Overconfident Classifier

21 October 2022
Sumedha Singla
Nihal Murali
Forough Arabshahi
Sofia Triantafyllou
Kayhan Batmanghelich
    CML
ArXivPDFHTML

Papers citing "Augmentation by Counterfactual Explanation -- Fixing an Overconfident Classifier"

6 / 6 papers shown
Title
On the Importance of Gradients for Detecting Distributional Shifts in
  the Wild
On the Importance of Gradients for Detecting Distributional Shifts in the Wild
Rui Huang
Andrew Geng
Yixuan Li
173
326
0
01 Oct 2021
Explaining the Black-box Smoothly- A Counterfactual Approach
Explaining the Black-box Smoothly- A Counterfactual Approach
Junyu Chen
Yong Du
Yufan He
W. Paul Segars
Ye Li
MedIm
FAtt
63
83
0
11 Jan 2021
Improving model calibration with accuracy versus uncertainty
  optimization
Improving model calibration with accuracy versus uncertainty optimization
R. Krishnan
Omesh Tickoo
UQCV
183
156
0
14 Dec 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,652
0
05 Dec 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
247
36,237
0
25 Aug 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,109
0
06 Jun 2015
1