Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.14348
Cited By
Synthetic Text Generation with Differential Privacy: A Simple and Practical Recipe
25 October 2022
Xiang Yue
Huseyin A. Inan
Xuechen Li
Girish Kumar
Julia McAnallen
Hoda Shajari
Huan Sun
David Levitan
Robert Sim
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Synthetic Text Generation with Differential Privacy: A Simple and Practical Recipe"
19 / 69 papers shown
Title
A Unified View of Differentially Private Deep Generative Modeling
Dingfan Chen
Raouf Kerkouche
Mario Fritz
SyDa
21
4
0
27 Sep 2023
Privacy-Preserving In-Context Learning with Differentially Private Few-Shot Generation
Xinyu Tang
Richard Shin
Huseyin A. Inan
Andre Manoel
Fatemehsadat Mireshghallah
Zinan Lin
Sivakanth Gopi
Janardhan Kulkarni
Robert Sim
33
52
0
21 Sep 2023
Right to be Forgotten in the Era of Large Language Models: Implications, Challenges, and Solutions
Dawen Zhang
Pamela Finckenberg-Broman
Thong Hoang
Shidong Pan
Zhenchang Xing
Mark Staples
Xiwei Xu
AILaw
MU
18
50
0
08 Jul 2023
Harnessing large-language models to generate private synthetic text
Alexey Kurakin
Natalia Ponomareva
Umar Syed
Liam MacDermed
Andreas Terzis
SILM
SyDa
20
34
0
02 Jun 2023
Differentially Private Synthetic Data via Foundation Model APIs 1: Images
Zi-Han Lin
Sivakanth Gopi
Janardhan Kulkarni
Harsha Nori
Sergey Yekhanin
33
36
0
24 May 2023
Privacy Implications of Retrieval-Based Language Models
Yangsibo Huang
Samyak Gupta
Zexuan Zhong
K. Li
Danqi Chen
RALM
25
29
0
24 May 2023
Synthetic Query Generation for Privacy-Preserving Deep Retrieval Systems using Differentially Private Language Models
Aldo G. Carranza
Rezsa Farahani
Natalia Ponomareva
Alexey Kurakin
Matthew Jagielski
Milad Nasr
SyDa
12
7
0
10 May 2023
Machine Learning for Synthetic Data Generation: A Review
Ying-Cheng Lu
Minjie Shen
Huazheng Wang
Xiao Wang
Capucine Van Rechem
Tianfan Fu
Wenqi Wei
SyDa
18
138
0
08 Feb 2023
Differentially Private Natural Language Models: Recent Advances and Future Directions
Lijie Hu
Ivan Habernal
Lei Shen
Di Wang
AAML
13
18
0
22 Jan 2023
MAUVE Scores for Generative Models: Theory and Practice
Krishna Pillutla
Lang Liu
John Thickstun
Sean Welleck
Swabha Swayamdipta
Rowan Zellers
Sewoong Oh
Yejin Choi
Zaïd Harchaoui
EGVM
23
21
0
30 Dec 2022
FedDM: Iterative Distribution Matching for Communication-Efficient Federated Learning
Yuanhao Xiong
Ruochen Wang
Minhao Cheng
Felix X. Yu
Cho-Jui Hsieh
FedML
DD
36
82
0
20 Jul 2022
Scalable and Efficient Training of Large Convolutional Neural Networks with Differential Privacy
Zhiqi Bu
J. Mao
Shiyun Xu
131
47
0
21 May 2022
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
134
344
0
13 Oct 2021
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
144
348
0
25 Sep 2021
Deduplicating Training Data Makes Language Models Better
Katherine Lee
Daphne Ippolito
A. Nystrom
Chiyuan Zhang
Douglas Eck
Chris Callison-Burch
Nicholas Carlini
SyDa
237
588
0
14 Jul 2021
On a Utilitarian Approach to Privacy Preserving Text Generation
Zekun Xu
Abhinav Aggarwal
Oluwaseyi Feyisetan
Nathanael Teissier
26
24
0
23 Apr 2021
Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for Private Learning
Da Yu
Huishuai Zhang
Wei Chen
Tie-Yan Liu
FedML
SILM
91
110
0
25 Feb 2021
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
267
1,808
0
14 Dec 2020
Private Post-GAN Boosting
Marcel Neunhoeffer
Zhiwei Steven Wu
Cynthia Dwork
110
29
0
23 Jul 2020
Previous
1
2