Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.16105
Cited By
Efficient and Light-Weight Federated Learning via Asynchronous Distributed Dropout
28 October 2022
Chen Dun
Mirian Hipolito Garcia
C. Jermaine
Dimitrios Dimitriadis
Anastasios Kyrillidis
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Efficient and Light-Weight Federated Learning via Asynchronous Distributed Dropout"
7 / 7 papers shown
Title
Asynchronous Federated Reinforcement Learning with Policy Gradient Updates: Algorithm Design and Convergence Analysis
Guangchen Lan
Dong-Jun Han
Abolfazl Hashemi
Vaneet Aggarwal
Christopher G. Brinton
104
15
0
09 Apr 2024
Papaya: Practical, Private, and Scalable Federated Learning
Dzmitry Huba
John Nguyen
Kshitiz Malik
Ruiyu Zhu
Michael G. Rabbat
...
H. Srinivas
Kaikai Wang
Anthony Shoumikhin
Jesik Min
Mani Malek
FedML
97
133
0
08 Nov 2021
Asynchronous Federated Learning on Heterogeneous Devices: A Survey
Chenhao Xu
Youyang Qu
Yong Xiang
Longxiang Gao
FedML
83
162
0
09 Sep 2021
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
160
358
0
14 Jul 2021
FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout
Samuel Horváth
Stefanos Laskaridis
Mario Almeida
Ilias Leondiadis
Stylianos I. Venieris
Nicholas D. Lane
157
206
0
26 Feb 2021
Stragglers Are Not Disaster: A Hybrid Federated Learning Algorithm with Delayed Gradients
Xingyu Li
Zhe Qu
Bo Tang
Zhuo Lu
FedML
51
31
0
12 Feb 2021
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
243
8,157
0
06 Jun 2015
1