ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.16190
  4. Cited By
Transferable E(3) equivariant parameterization for Hamiltonian of
  molecules and solids

Transferable E(3) equivariant parameterization for Hamiltonian of molecules and solids

28 October 2022
Yang Zhong
Hongyu Yu
Mao Su
X. Gong
H. Xiang
ArXivPDFHTML

Papers citing "Transferable E(3) equivariant parameterization for Hamiltonian of molecules and solids"

6 / 6 papers shown
Title
Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
Yunyang Li
Zaishuo Xia
Lin Huang
Xinran Wei
Han Yang
...
Zun Wang
Chang-Shu Liu
Jia Zhang
Bin Shao
Mark B. Gerstein
77
0
0
26 Feb 2025
Universal Machine Learning Kohn-Sham Hamiltonian for Materials
Universal Machine Learning Kohn-Sham Hamiltonian for Materials
Yang Zhong
Hongyu Yu
Ji-Hui Yang
Xingyu Guo
Hongjun Xiang
X. Gong
20
17
0
14 Feb 2024
General time-reversal equivariant neural network potential for magnetic
  materials
General time-reversal equivariant neural network potential for magnetic materials
Hongyu Yu
Boyu Liu
Yang Zhong
Liangliang Hong
Jun-zhong Ji
Changsong Xu
X. Gong
Hongjun Xiang
20
2
0
21 Nov 2022
Crystal Diffusion Variational Autoencoder for Periodic Material
  Generation
Crystal Diffusion Variational Autoencoder for Periodic Material Generation
Tian Xie
Xiang Fu
O. Ganea
Regina Barzilay
Tommi Jaakkola
DiffM
BDL
212
232
0
12 Oct 2021
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and
  Nonlocal Effects
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
171
246
0
01 May 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
203
1,238
0
08 Jan 2021
1