Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.17484
Cited By
The Open MatSci ML Toolkit: A Flexible Framework for Machine Learning in Materials Science
31 October 2022
Santiago Miret
Kin Long Kelvin Lee
Carmelo Gonzales
Marcel Nassar
Matthew Spellings
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Open MatSci ML Toolkit: A Flexible Framework for Machine Learning in Materials Science"
15 / 15 papers shown
Title
SymmCD: Symmetry-Preserving Crystal Generation with Diffusion Models
Daniel Levy
Siba Smarak Panigrahi
Sékou-Oumar Kaba
Qiang Zhu
Kin Long Kelvin Lee
Mikhail Galkin
Santiago Miret
Siamak Ravanbakhsh
99
11
0
05 Feb 2025
Deconstructing equivariant representations in molecular systems
Kin Long Kelvin Lee
Mikhail Galkin
Santiago Miret
19
1
0
10 Oct 2024
MatText: Do Language Models Need More than Text & Scale for Materials Modeling?
Nawaf Alampara
Santiago Miret
K. Jablonka
40
8
0
25 Jun 2024
On the importance of catalyst-adsorbate 3D interactions for relaxed energy predictions
Alvaro Carbonero
Alexandre Duval
Victor Schmidt
Santiago Miret
Alex Hernandez-Garcia
Yoshua Bengio
David Rolnick
22
0
0
10 Oct 2023
EGraFFBench: Evaluation of Equivariant Graph Neural Network Force Fields for Atomistic Simulations
Vaibhav Bihani
Utkarsh Pratiush
Sajid Mannan
Tao Du
Zhimin Chen
Santiago Miret
Matthieu Micoulaut
M. Smedskjaer
Sayan Ranu
N. M. A. Krishnan
19
19
0
03 Oct 2023
MatSciML: A Broad, Multi-Task Benchmark for Solid-State Materials Modeling
Kin Long Kelvin Lee
Carmelo Gonzales
Marcel Nassar
Matthew Spellings
Mikhail Galkin
Santiago Miret
19
15
0
12 Sep 2023
Using Multiple Vector Channels Improves E(n)-Equivariant Graph Neural Networks
Daniel Levy
Sekouba Kaba
Carmelo Gonzales
Santiago Miret
Siamak Ravanbakhsh
23
5
0
06 Sep 2023
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Alexandre Duval
Victor Schmidt
A. Garcia
Santiago Miret
Fragkiskos D. Malliaros
Yoshua Bengio
David Rolnick
20
51
0
28 Apr 2023
PhAST: Physics-Aware, Scalable, and Task-specific GNNs for Accelerated Catalyst Design
Alexandre Duval
Victor Schmidt
Santiago Miret
Yoshua Bengio
Alex Hernández-García
David Rolnick
14
7
0
22 Nov 2022
Sequential Aggregation and Rematerialization: Distributed Full-batch Training of Graph Neural Networks on Large Graphs
Hesham Mostafa
GNN
40
21
0
11 Nov 2021
Geometric Algebra Attention Networks for Small Point Clouds
Matthew Spellings
3DPC
45
12
0
05 Oct 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
163
1,095
0
27 Apr 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
188
1,218
0
08 Jan 2021
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
L. Chanussot
Abhishek Das
Siddharth Goyal
Thibaut Lavril
Muhammed Shuaibi
...
Brandon M. Wood
Junwoong Yoon
Devi Parikh
C. L. Zitnick
Zachary W. Ulissi
207
370
0
20 Oct 2020
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
231
3,202
0
24 Nov 2016
1