ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.00454
  4. Cited By
PELICAN: Permutation Equivariant and Lorentz Invariant or Covariant
  Aggregator Network for Particle Physics

PELICAN: Permutation Equivariant and Lorentz Invariant or Covariant Aggregator Network for Particle Physics

1 November 2022
A. Bogatskiy
Timothy Hoffman
David W. Miller
Jan T. Offermann
ArXivPDFHTML

Papers citing "PELICAN: Permutation Equivariant and Lorentz Invariant or Covariant Aggregator Network for Particle Physics"

6 / 6 papers shown
Title
$\mathbb{Z}_2\times \mathbb{Z}_2$ Equivariant Quantum Neural Networks:
  Benchmarking against Classical Neural Networks
Z2×Z2\mathbb{Z}_2\times \mathbb{Z}_2Z2​×Z2​ Equivariant Quantum Neural Networks: Benchmarking against Classical Neural Networks
Zhongtian Dong
Marçal Comajoan Cara
Gopal Ramesh Dahale
Roy T. Forestano
S. Gleyzer
...
Kyoungchul Kong
Tom Magorsch
Konstantin T. Matchev
Katia Matcheva
Eyup B. Unlu
25
5
0
30 Nov 2023
A Geometric Insight into Equivariant Message Passing Neural Networks on
  Riemannian Manifolds
A Geometric Insight into Equivariant Message Passing Neural Networks on Riemannian Manifolds
Ilyes Batatia
23
0
0
16 Oct 2023
Reconstruction of Unstable Heavy Particles Using Deep
  Symmetry-Preserving Attention Networks
Reconstruction of Unstable Heavy Particles Using Deep Symmetry-Preserving Attention Networks
M. Fenton
Alexander Shmakov
H. Okawa
Yuji Li
Ko-Yang Hsiao
Shih-Chieh Hsu
D. Whiteson
Pierre Baldi
34
7
0
05 Sep 2023
Rotation-Invariant Random Features Provide a Strong Baseline for Machine
  Learning on 3D Point Clouds
Rotation-Invariant Random Features Provide a Strong Baseline for Machine Learning on 3D Point Clouds
O. Melia
Eric Jonas
Rebecca Willett
OOD
3DPC
18
3
0
27 Jul 2023
Anomalies, Representations, and Self-Supervision
Anomalies, Representations, and Self-Supervision
B. Dillon
Luigi Favaro
Friedrich Feiden
Tanmoy Modak
Tilman Plehn
23
9
0
11 Jan 2023
A Detailed Study of Interpretability of Deep Neural Network based Top
  Taggers
A Detailed Study of Interpretability of Deep Neural Network based Top Taggers
Ayush Khot
Mark S. Neubauer
Avik Roy
AAML
33
16
0
09 Oct 2022
1