ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.07206
  4. Cited By
Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior:
  From Theory to Practice

Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior: From Theory to Practice

14 November 2022
Jonas Rothfuss
Martin Josifoski
Vincent Fortuin
Andreas Krause
ArXivPDFHTML

Papers citing "Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior: From Theory to Practice"

17 / 17 papers shown
Title
Sparse Gaussian Neural Processes
Sparse Gaussian Neural Processes
Tommy Rochussen
Vincent Fortuin
BDL
UQCV
56
0
0
02 Apr 2025
Filtered not Mixed: Stochastic Filtering-Based Online Gating for Mixture of Large Language Models
Filtered not Mixed: Stochastic Filtering-Based Online Gating for Mixture of Large Language Models
Raeid Saqur
Anastasis Kratsios
Florian Krach
Yannick Limmer
Jacob-Junqi Tian
John Willes
Blanka Horvath
Frank Rudzicz
MoE
43
0
0
24 Feb 2025
Learning via Surrogate PAC-Bayes
Learning via Surrogate PAC-Bayes
Antoine Picard-Weibel
Roman Moscoviz
Benjamin Guedj
23
0
0
14 Oct 2024
More Flexible PAC-Bayesian Meta-Learning by Learning Learning Algorithms
More Flexible PAC-Bayesian Meta-Learning by Learning Learning Algorithms
Hossein Zakerinia
Amin Behjati
Christoph H. Lampert
FedML
22
4
0
06 Feb 2024
Data-Efficient Task Generalization via Probabilistic Model-based Meta
  Reinforcement Learning
Data-Efficient Task Generalization via Probabilistic Model-based Meta Reinforcement Learning
Arjun Bhardwaj
Jonas Rothfuss
Bhavya Sukhija
Yarden As
Marco Hutter
Stelian Coros
Andreas Krause
16
5
0
13 Nov 2023
Improving Neural Additive Models with Bayesian Principles
Improving Neural Additive Models with Bayesian Principles
Kouroche Bouchiat
Alexander Immer
Hugo Yèche
Gunnar Rätsch
Vincent Fortuin
BDL
MedIm
26
6
0
26 May 2023
Lifelong Bandit Optimization: No Prior and No Regret
Lifelong Bandit Optimization: No Prior and No Regret
Felix Schur
Parnian Kassraie
Jonas Rothfuss
Andreas Krause
35
3
0
27 Oct 2022
Meta-Learning Priors for Safe Bayesian Optimization
Meta-Learning Priors for Safe Bayesian Optimization
Jonas Rothfuss
Christopher Koenig
Alisa Rupenyan
Andreas Krause
28
29
0
03 Oct 2022
Meta Representation Learning with Contextual Linear Bandits
Meta Representation Learning with Contextual Linear Bandits
Leonardo Cella
Karim Lounici
Massimiliano Pontil
26
5
0
30 May 2022
Meta-Learning Hypothesis Spaces for Sequential Decision-making
Meta-Learning Hypothesis Spaces for Sequential Decision-making
Parnian Kassraie
Jonas Rothfuss
Andreas Krause
OffRL
28
6
0
01 Feb 2022
Generalization Bounds For Meta-Learning: An Information-Theoretic
  Analysis
Generalization Bounds For Meta-Learning: An Information-Theoretic Analysis
Qi Chen
Changjian Shui
M. Marchand
35
43
0
29 Sep 2021
Bayesian Model-Agnostic Meta-Learning
Bayesian Model-Agnostic Meta-Learning
Taesup Kim
Jaesik Yoon
Ousmane Amadou Dia
Sungwoong Kim
Yoshua Bengio
Sungjin Ahn
UQCV
BDL
191
498
0
11 Jun 2018
Probabilistic Model-Agnostic Meta-Learning
Probabilistic Model-Agnostic Meta-Learning
Chelsea Finn
Kelvin Xu
Sergey Levine
BDL
165
666
0
07 Jun 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
243
11,659
0
09 Mar 2017
Simpler PAC-Bayesian Bounds for Hostile Data
Simpler PAC-Bayesian Bounds for Hostile Data
Pierre Alquier
Benjamin Guedj
79
72
0
23 Oct 2016
PAC-Bayesian Bounds for Randomized Empirical Risk Minimizers
PAC-Bayesian Bounds for Randomized Empirical Risk Minimizers
Pierre Alquier
156
58
0
11 Dec 2007
Pac-Bayesian Supervised Classification: The Thermodynamics of
  Statistical Learning
Pac-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning
O. Catoni
135
453
0
03 Dec 2007
1