ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.07842
  4. Cited By
Evaluating How Fine-tuning on Bimodal Data Effects Code Generation

Evaluating How Fine-tuning on Bimodal Data Effects Code Generation

15 November 2022
Gabriel Orlanski
Seonhye Yang
Michael Healy
    ALM
ArXivPDFHTML

Papers citing "Evaluating How Fine-tuning on Bimodal Data Effects Code Generation"

4 / 4 papers shown
Title
Measuring The Impact Of Programming Language Distribution
Measuring The Impact Of Programming Language Distribution
Gabriel Orlanski
Kefan Xiao
Xavier Garcia
Jeffrey Hui
Joshua Howland
J. Malmaud
Jacob Austin
Rishah Singh
Michele Catasta
10
19
0
03 Feb 2023
A Systematic Evaluation of Large Language Models of Code
A Systematic Evaluation of Large Language Models of Code
Frank F. Xu
Uri Alon
Graham Neubig
Vincent J. Hellendoorn
ELM
ALM
193
624
0
26 Feb 2022
CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for
  Code Understanding and Generation
CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation
Yue Wang
Weishi Wang
Shafiq R. Joty
S. Hoi
201
1,451
0
02 Sep 2021
The Pile: An 800GB Dataset of Diverse Text for Language Modeling
The Pile: An 800GB Dataset of Diverse Text for Language Modeling
Leo Gao
Stella Biderman
Sid Black
Laurence Golding
Travis Hoppe
...
Horace He
Anish Thite
Noa Nabeshima
Shawn Presser
Connor Leahy
AIMat
239
1,508
0
31 Dec 2020
1