ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.08179
  4. Cited By
Artificial intelligence approaches for materials-by-design of energetic
  materials: state-of-the-art, challenges, and future directions

Artificial intelligence approaches for materials-by-design of energetic materials: state-of-the-art, challenges, and future directions

15 November 2022
Joseph B. Choi
Phong C. H. Nguyen
O. Sen
H. Udaykumar
Stephen Seung-Yeob Baek
    PINN
    AI4CE
ArXivPDFHTML

Papers citing "Artificial intelligence approaches for materials-by-design of energetic materials: state-of-the-art, challenges, and future directions"

7 / 7 papers shown
Title
Explaining neural network predictions of material strength
Explaining neural network predictions of material strength
Ian Palmer
T. Nathan Mundhenk
B. J. Gallagher
Yong Han
14
2
0
05 Nov 2021
From Show to Tell: A Survey on Deep Learning-based Image Captioning
From Show to Tell: A Survey on Deep Learning-based Image Captioning
Matteo Stefanini
Marcella Cornia
Lorenzo Baraldi
S. Cascianelli
G. Fiameni
Rita Cucchiara
3DV
VLM
MLLM
51
244
0
14 Jul 2021
A General Framework Combining Generative Adversarial Networks and
  Mixture Density Networks for Inverse Modeling in Microstructural Materials
  Design
A General Framework Combining Generative Adversarial Networks and Mixture Density Networks for Inverse Modeling in Microstructural Materials Design
Zijiang Yang
Dipendra Jha
Arindam Paul
W. Liao
A. Choudhary
Ankit Agrawal
MedIm
AI4CE
13
9
0
26 Jan 2021
Deep Reinforcement Learning for Autonomous Driving: A Survey
Deep Reinforcement Learning for Autonomous Driving: A Survey
B. R. Kiran
Ibrahim Sobh
V. Talpaert
Patrick Mannion
A. A. Sallab
S. Yogamani
P. Pérez
135
1,599
0
02 Feb 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,635
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
243
9,042
0
06 Jun 2015
A Large Population Size Can Be Unhelpful in Evolutionary Algorithms
A Large Population Size Can Be Unhelpful in Evolutionary Algorithms
Tianshi Chen
Ke Tang
Guoliang Chen
Xin Yao
57
55
0
11 Aug 2012
1