ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.08597
  4. Cited By
SketchySGD: Reliable Stochastic Optimization via Randomized Curvature
  Estimates
v1v2v3v4v5 (latest)

SketchySGD: Reliable Stochastic Optimization via Randomized Curvature Estimates

SIAM Journal on Mathematics of Data Science (SIMODS), 2022
16 November 2022
Zachary Frangella
Pratik Rathore
Shipu Zhao
Madeleine Udell
ArXiv (abs)PDFHTML

Papers citing "SketchySGD: Reliable Stochastic Optimization via Randomized Curvature Estimates"

4 / 4 papers shown
NysAct: A Scalable Preconditioned Gradient Descent using Nystrom ApproximationBigData Congress [Services Society] (BSS), 2024
Hyunseok Seung
Jaewoo Lee
Hyunsuk Ko
ODL
301
0
0
10 Jun 2025
Turbocharging Gaussian Process Inference with Approximate Sketch-and-Project
Turbocharging Gaussian Process Inference with Approximate Sketch-and-Project
Pratik Rathore
Zachary Frangella
Sachin Garg
Shaghayegh Fazliani
Michał Dereziński
Madeleine Udell
361
2
0
19 May 2025
SAPPHIRE: Preconditioned Stochastic Variance Reduction for Faster Large-Scale Statistical Learning
Jingruo Sun
Zachary Frangella
Madeleine Udell
215
2
0
28 Jan 2025
Newton Meets Marchenko-Pastur: Massively Parallel Second-Order
  Optimization with Hessian Sketching and Debiasing
Newton Meets Marchenko-Pastur: Massively Parallel Second-Order Optimization with Hessian Sketching and DebiasingInternational Conference on Learning Representations (ICLR), 2024
Elad Romanov
Fangzhao Zhang
Mert Pilanci
187
2
0
02 Oct 2024
1