ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.09866
  4. Cited By
Fast Uncertainty Estimates in Deep Learning Interatomic Potentials

Fast Uncertainty Estimates in Deep Learning Interatomic Potentials

17 November 2022
Albert J. W. Zhu
Simon L. Batzner
Albert Musaelian
Boris Kozinsky
ArXivPDFHTML

Papers citing "Fast Uncertainty Estimates in Deep Learning Interatomic Potentials"

19 / 19 papers shown
Title
Accelerating and enhancing thermodynamic simulations of electrochemical interfaces
Accelerating and enhancing thermodynamic simulations of electrochemical interfaces
Xiaochen Du
Mengren Liu
Jiayu Peng
Hoje Chun
Alexander Hoffman
Bilge Yildiz
Lin Li
Martin Z. Bazant
Rafael Gómez-Bombarelli
51
0
0
22 Mar 2025
Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials
Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials
Matthias Holzenkamp
Dongyu Lyu
Ulrich Kleinekathöfer
Peter Zaspel
33
0
0
10 Jan 2025
Learning charges and long-range interactions from energies and forces
Learning charges and long-range interactions from energies and forces
Dongjin Kim
Daniel S. King
Peichen Zhong
Bingqing Cheng
89
5
0
19 Dec 2024
Accelerating the Training and Improving the Reliability of
  Machine-Learned Interatomic Potentials for Strongly Anharmonic Materials
  through Active Learning
Accelerating the Training and Improving the Reliability of Machine-Learned Interatomic Potentials for Strongly Anharmonic Materials through Active Learning
Kisung Kang
Thomas A. R. Purcell
Christian Carbogno
Matthias Scheffler
AI4CE
22
0
0
18 Sep 2024
Outlier-Detection for Reactive Machine Learned Potential Energy Surfaces
Outlier-Detection for Reactive Machine Learned Potential Energy Surfaces
Luis Itza Vazquez-Salazar
Silvan Käser
Markus Meuwly
EDL
24
3
0
27 Feb 2024
Enhanced sampling of robust molecular datasets with uncertainty-based
  collective variables
Enhanced sampling of robust molecular datasets with uncertainty-based collective variables
Aik Rui Tan
Johannes C. B. Dietschreit
Rafael Gómez-Bombarelli
20
2
0
06 Feb 2024
LTAU-FF: Loss Trajectory Analysis for Uncertainty in Atomistic Force
  Fields
LTAU-FF: Loss Trajectory Analysis for Uncertainty in Atomistic Force Fields
Joshua A. Vita
Amit Samanta
Fei Zhou
Vincenzo Lordi
16
2
0
01 Feb 2024
Uncertainty-biased molecular dynamics for learning uniformly accurate
  interatomic potentials
Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic potentials
Viktor Zaverkin
David Holzmüller
Henrik Christiansen
Federico Errica
Francesco Alesiani
Makoto Takamoto
Mathias Niepert
Johannes Kastner
AI4CE
19
13
0
03 Dec 2023
Ensemble models outperform single model uncertainties and predictions
  for operator-learning of hypersonic flows
Ensemble models outperform single model uncertainties and predictions for operator-learning of hypersonic flows
Victor J. Leon
Noah Ford
Honest Mrema
Jeffrey Gilbert
Alexander New
UQCV
AI4CE
8
0
0
31 Oct 2023
Band-gap regression with architecture-optimized message-passing neural
  networks
Band-gap regression with architecture-optimized message-passing neural networks
Tim Bechtel
Daniel T. Speckhard
Jonathan Godwin
Claudia Ambrosch-Draxl
11
0
0
12 Sep 2023
Matbench Discovery -- A framework to evaluate machine learning crystal
  stability predictions
Matbench Discovery -- A framework to evaluate machine learning crystal stability predictions
Janosh Riebesell
Rhys E. A. Goodall
Philipp Benner
Chiang Yuan
Bowen Deng
A. Lee
Anubhav Jain
Kristin A. Persson
OOD
24
33
0
28 Aug 2023
Accurate machine learning force fields via experimental and simulation
  data fusion
Accurate machine learning force fields via experimental and simulation data fusion
Sebastien Röcken
J. Zavadlav
AI4CE
18
12
0
17 Aug 2023
Single-model uncertainty quantification in neural network potentials
  does not consistently outperform model ensembles
Single-model uncertainty quantification in neural network potentials does not consistently outperform model ensembles
Aik Rui Tan
S. Urata
Samuel Goldman
Johannes C. B. Dietschreit
Rafael Gómez-Bombarelli
BDL
24
41
0
02 May 2023
Scaling the leading accuracy of deep equivariant models to biomolecular
  simulations of realistic size
Scaling the leading accuracy of deep equivariant models to biomolecular simulations of realistic size
Albert Musaelian
A. Johansson
Simon L. Batzner
Boris Kozinsky
22
48
0
20 Apr 2023
Scalable Bayesian Uncertainty Quantification for Neural Network
  Potentials: Promise and Pitfalls
Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls
Stephan Thaler
Gregor Doehner
J. Zavadlav
14
21
0
15 Dec 2022
Transfer learning for chemically accurate interatomic neural network
  potentials
Transfer learning for chemically accurate interatomic neural network potentials
Viktor Zaverkin
David Holzmüller
Luca Bonfirraro
Johannes Kastner
15
24
0
07 Dec 2022
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
190
1,229
0
08 Jan 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,652
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,134
0
06 Jun 2015
1