ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.10575
  4. Cited By
Bayesian autoencoders for data-driven discovery of coordinates,
  governing equations and fundamental constants

Bayesian autoencoders for data-driven discovery of coordinates, governing equations and fundamental constants

19 November 2022
Liyao (Mars) Gao
J. Nathan Kutz
    AI4CE
ArXivPDFHTML

Papers citing "Bayesian autoencoders for data-driven discovery of coordinates, governing equations and fundamental constants"

8 / 8 papers shown
Title
Optimizing Hard Thresholding for Sparse Model Discovery
Optimizing Hard Thresholding for Sparse Model Discovery
Derek W. Jollie
Scott G. McCalla
41
0
0
28 Apr 2025
Recurrent Deep Kernel Learning of Dynamical Systems
Recurrent Deep Kernel Learning of Dynamical Systems
N. Botteghi
Paolo Motta
Andrea Manzoni
P. Zunino
Mengwu Guo
13
1
0
30 May 2024
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
258
7,412
0
11 Nov 2021
Sparse Deep Learning: A New Framework Immune to Local Traps and
  Miscalibration
Sparse Deep Learning: A New Framework Immune to Local Traps and Miscalibration
Y. Sun
Wenjun Xiong
F. Liang
40
8
0
01 Oct 2021
Consistent Sparse Deep Learning: Theory and Computation
Consistent Sparse Deep Learning: Theory and Computation
Y. Sun
Qifan Song
F. Liang
BDL
33
28
0
25 Feb 2021
A Contour Stochastic Gradient Langevin Dynamics Algorithm for
  Simulations of Multi-modal Distributions
A Contour Stochastic Gradient Langevin Dynamics Algorithm for Simulations of Multi-modal Distributions
Wei Deng
Guang Lin
F. Liang
BDL
34
27
0
19 Oct 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and
  Inverse PDE Problems with Noisy Data
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
170
756
0
13 Mar 2020
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
132
3,263
0
09 Jun 2012
1