ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.14118
  4. Cited By
MS-PS: A Multi-Scale Network for Photometric Stereo With a New
  Comprehensive Training Dataset

MS-PS: A Multi-Scale Network for Photometric Stereo With a New Comprehensive Training Dataset

25 November 2022
Clément Hardy
Yvain Quéau
David Tschumperlé
    3DV
ArXivPDFHTML

Papers citing "MS-PS: A Multi-Scale Network for Photometric Stereo With a New Comprehensive Training Dataset"

5 / 5 papers shown
Title
A Neural Height-Map Approach for the Binocular Photometric Stereo
  Problem
A Neural Height-Map Approach for the Binocular Photometric Stereo Problem
Fotios Logothetis
Ignas Budvytis
Roberto Cipolla
3DV
19
3
0
10 Nov 2023
Deep Learning Methods for Calibrated Photometric Stereo and Beyond
Deep Learning Methods for Calibrated Photometric Stereo and Beyond
Yakun Ju
K. Lam
Wuyuan Xie
Huiyu Zhou
Junyu Dong
Boxin Shi
11
34
0
16 Dec 2022
A CNN Based Approach for the Point-Light Photometric Stereo Problem
A CNN Based Approach for the Point-Light Photometric Stereo Problem
Fotios Logothetis
R. Mecca
Ignas Budvytis
R. Cipolla
3DPC
3DV
32
20
0
10 Oct 2022
Learning Inter- and Intraframe Representations for Non-Lambertian
  Photometric Stereo
Learning Inter- and Intraframe Representations for Non-Lambertian Photometric Stereo
Yanlong Cao
Binjie Ding
Zewei He
Jiangxin Yang
Jingxi Chen
Yanpeng Cao
Xin Li
11
13
0
26 Dec 2020
PS-FCN: A Flexible Learning Framework for Photometric Stereo
PS-FCN: A Flexible Learning Framework for Photometric Stereo
Guanying Chen
Kai Han
Kwan-Yee Kenneth Wong
46
134
0
23 Jul 2018
1