ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.14668
  4. Cited By
A Maximum Log-Likelihood Method for Imbalanced Few-Shot Learning Tasks

A Maximum Log-Likelihood Method for Imbalanced Few-Shot Learning Tasks

26 November 2022
Samuel Hess
G. Ditzler
ArXivPDFHTML

Papers citing "A Maximum Log-Likelihood Method for Imbalanced Few-Shot Learning Tasks"

7 / 7 papers shown
Title
Rectifying the Shortcut Learning of Background for Few-Shot Learning
Rectifying the Shortcut Learning of Background for Few-Shot Learning
Xu Luo
Longhui Wei
Liangjiang Wen
Jinrong Yang
Lingxi Xie
Zenglin Xu
Qi Tian
34
86
0
16 Jul 2021
Few-Shot Learning with Class Imbalance
Few-Shot Learning with Class Imbalance
Mateusz Ochal
Massimiliano Patacchiola
Amos Storkey
Jose Vazquez
Sen Wang
16
35
0
07 Jan 2021
TaskNorm: Rethinking Batch Normalization for Meta-Learning
TaskNorm: Rethinking Batch Normalization for Meta-Learning
J. Bronskill
Jonathan Gordon
James Requeima
Sebastian Nowozin
Richard E. Turner
59
89
0
06 Mar 2020
Cross Attention Network for Few-shot Classification
Cross Attention Network for Few-shot Classification
Rui Hou
Hong Chang
Bingpeng Ma
Shiguang Shan
Xilin Chen
202
629
0
17 Oct 2019
Bayesian Model-Agnostic Meta-Learning
Bayesian Model-Agnostic Meta-Learning
Taesup Kim
Jaesik Yoon
Ousmane Amadou Dia
Sungwoong Kim
Yoshua Bengio
Sungjin Ahn
UQCV
BDL
191
498
0
11 Jun 2018
Probabilistic Model-Agnostic Meta-Learning
Probabilistic Model-Agnostic Meta-Learning
Chelsea Finn
Kelvin Xu
Sergey Levine
BDL
165
666
0
07 Jun 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
278
11,677
0
09 Mar 2017
1