Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.14865
Cited By
Understanding BLOOM: An empirical study on diverse NLP tasks
27 November 2022
Parag Dakle
Sai Krishna Rallabandi
Preethi Raghavan
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding BLOOM: An empirical study on diverse NLP tasks"
8 / 8 papers shown
Title
Probing LLMs for Multilingual Discourse Generalization Through a Unified Label Set
Florian Eichin
Y. Liu
Barbara Plank
Michael A. Hedderich
39
0
0
13 Mar 2025
An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA
Zhengyuan Yang
Zhe Gan
Jianfeng Wang
Xiaowei Hu
Yumao Lu
Zicheng Liu
Lijuan Wang
169
402
0
10 Sep 2021
Unifying Vision-and-Language Tasks via Text Generation
Jaemin Cho
Jie Lei
Hao Tan
Mohit Bansal
MLLM
249
525
0
04 Feb 2021
The Pile: An 800GB Dataset of Diverse Text for Language Modeling
Leo Gao
Stella Biderman
Sid Black
Laurence Golding
Travis Hoppe
...
Horace He
Anish Thite
Noa Nabeshima
Shawn Presser
Connor Leahy
AIMat
245
1,977
0
31 Dec 2020
Making Pre-trained Language Models Better Few-shot Learners
Tianyu Gao
Adam Fisch
Danqi Chen
241
1,913
0
31 Dec 2020
How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models
Phillip Rust
Jonas Pfeiffer
Ivan Vulić
Sebastian Ruder
Iryna Gurevych
69
234
0
31 Dec 2020
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
226
4,424
0
23 Jan 2020
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
294
6,943
0
20 Apr 2018
1