Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.14981
Cited By
The Grind for Good Data: Understanding ML Practitioners' Struggles and Aspirations in Making Good Data
28 November 2022
Inha Cha
Juhyun Oh
Cheul Young Park
Jiyoon Han
Hwalsuk Lee
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Grind for Good Data: Understanding ML Practitioners' Struggles and Aspirations in Making Good Data"
5 / 5 papers shown
Title
Towards Scenario- and Capability-Driven Dataset Development and Evaluation: An Approach in the Context of Mapless Automated Driving
Felix Grün
Marcus Nolte
Markus Maurer
27
1
0
30 Apr 2024
Whose AI Dream? In search of the aspiration in data annotation
Ding-wen Wang
Shantanu Prabhat
Nithya Sambasivan
166
57
0
21 Mar 2022
Whither AutoML? Understanding the Role of Automation in Machine Learning Workflows
Doris Xin
Eva Yiwei Wu
D. Lee
Niloufar Salehi
Aditya G. Parameswaran
48
91
0
13 Jan 2021
AutoML to Date and Beyond: Challenges and Opportunities
Shubhra (Santu) Karmaker
Md. Mahadi Hassan
Micah J. Smith
Lei Xu
Chengxiang Zhai
K. Veeramachaneni
66
222
0
21 Oct 2020
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
294
4,187
0
23 Aug 2019
1