ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.16467
  4. Cited By
Linear Causal Disentanglement via Interventions

Linear Causal Disentanglement via Interventions

29 November 2022
C. Squires
A. Seigal
Salil Bhate
Caroline Uhler
    CML
ArXivPDFHTML

Papers citing "Linear Causal Disentanglement via Interventions"

48 / 48 papers shown
Title
Robustness of Nonlinear Representation Learning
Robustness of Nonlinear Representation Learning
Simon Buchholz
Bernhard Schölkopf
OOD
131
3
0
19 Mar 2025
I Predict Therefore I Am: Is Next Token Prediction Enough to Learn Human-Interpretable Concepts from Data?
I Predict Therefore I Am: Is Next Token Prediction Enough to Learn Human-Interpretable Concepts from Data?
Yuhang Liu
Dong Gong
Erdun Gao
Zhen Zhang
Biwei Huang
Mingming Gong
Anton van den Hengel
Javen Qinfeng Shi
J. Shi
142
0
0
12 Mar 2025
Sanity Checking Causal Representation Learning on a Simple Real-World System
Sanity Checking Causal Representation Learning on a Simple Real-World System
Juan L. Gamella
Simon Bing
Jakob Runge
CML
50
0
0
27 Feb 2025
Identifying General Mechanism Shifts in Linear Causal Representations
Identifying General Mechanism Shifts in Linear Causal Representations
Tianyu Chen
Kevin Bello
Francesco Locatello
Bryon Aragam
Pradeep Ravikumar
OOD
CML
33
3
0
31 Oct 2024
Identifiability Guarantees for Causal Disentanglement from Purely
  Observational Data
Identifiability Guarantees for Causal Disentanglement from Purely Observational Data
Ryan Welch
Jiaqi Zhang
Caroline Uhler
CML
OOD
51
1
0
31 Oct 2024
Identifiability Analysis of Linear ODE Systems with Hidden Confounders
Identifiability Analysis of Linear ODE Systems with Hidden Confounders
Yuanyuan Wang
Biwei Huang
Wei Huang
Xi Geng
Mingming Gong
CML
28
0
0
29 Oct 2024
Language Agents Meet Causality -- Bridging LLMs and Causal World Models
Language Agents Meet Causality -- Bridging LLMs and Causal World Models
John Gkountouras
Matthias Lindemann
Phillip Lippe
E. Gavves
Ivan Titov
LRM
28
0
0
25 Oct 2024
Analyzing (In)Abilities of SAEs via Formal Languages
Analyzing (In)Abilities of SAEs via Formal Languages
Abhinav Menon
Manish Shrivastava
David M. Krueger
Ekdeep Singh Lubana
42
7
0
15 Oct 2024
Automated Discovery of Pairwise Interactions from Unstructured Data
Automated Discovery of Pairwise Interactions from Unstructured Data
Zuheng
Xu
Moksh Jain
Ali Denton
Shawn Whitfield
Aniket Didolkar
Berton A. Earnshaw
Jason S. Hartford
23
2
0
11 Sep 2024
Linear causal disentanglement via higher-order cumulants
Linear causal disentanglement via higher-order cumulants
Paula Leyes Carreno
Chiara Meroni
A. Seigal
CML
34
0
0
05 Jul 2024
Linear Causal Representation Learning from Unknown Multi-node
  Interventions
Linear Causal Representation Learning from Unknown Multi-node Interventions
Burak Varıcı
Emre Acartürk
Karthikeyan Shanmugam
A. Tajer
CML
29
1
0
09 Jun 2024
Smoke and Mirrors in Causal Downstream Tasks
Smoke and Mirrors in Causal Downstream Tasks
Riccardo Cadei
Lukas Lindorfer
Sylvia Cremer
Cordelia Schmid
Francesco Locatello
CML
28
3
0
27 May 2024
Learning Invariant Causal Mechanism from Vision-Language Models
Learning Invariant Causal Mechanism from Vision-Language Models
Zeen Song
Siyu Zhao
Xingyu Zhang
Jiangmeng Li
Changwen Zheng
Wenwen Qiang
CML
BDL
VLM
35
0
0
24 May 2024
Marrying Causal Representation Learning with Dynamical Systems for Science
Marrying Causal Representation Learning with Dynamical Systems for Science
Dingling Yao
Caroline Muller
Francesco Locatello
CML
AI4CE
40
6
0
22 May 2024
Propensity Score Alignment of Unpaired Multimodal Data
Propensity Score Alignment of Unpaired Multimodal Data
Johnny Xi
Jason S. Hartford
24
2
0
02 Apr 2024
Identifiable Latent Neural Causal Models
Identifiable Latent Neural Causal Models
Yuhang Liu
Zhen Zhang
Dong Gong
Mingming Gong
Biwei Huang
A. Hengel
Kun Zhang
Javen Qinfeng Shi
CML
OOD
32
7
0
23 Mar 2024
A Sparsity Principle for Partially Observable Causal Representation
  Learning
A Sparsity Principle for Partially Observable Causal Representation Learning
Danru Xu
Dingling Yao
Sébastien Lachapelle
Perouz Taslakian
Julius von Kügelgen
Francesco Locatello
Sara Magliacane
CML
34
13
0
13 Mar 2024
Learning Interpretable Concepts: Unifying Causal Representation Learning
  and Foundation Models
Learning Interpretable Concepts: Unifying Causal Representation Learning and Foundation Models
Goutham Rajendran
Simon Buchholz
Bryon Aragam
Bernhard Schölkopf
Pradeep Ravikumar
AI4CE
88
21
0
14 Feb 2024
Causal Representation Learning from Multiple Distributions: A General
  Setting
Causal Representation Learning from Multiple Distributions: A General Setting
Kun Zhang
Shaoan Xie
Ignavier Ng
Yujia Zheng
CML
OOD
29
18
0
07 Feb 2024
Invariance & Causal Representation Learning: Prospects and Limitations
Invariance & Causal Representation Learning: Prospects and Limitations
Simon Bing
Jonas Wahl
Urmi Ninad
Jakob Runge
CML
OOD
38
3
0
06 Dec 2023
Targeted Reduction of Causal Models
Targeted Reduction of Causal Models
Armin Kekić
Bernhard Schölkopf
M. Besserve
CML
50
9
0
30 Nov 2023
Self-Supervised Disentanglement by Leveraging Structure in Data
  Augmentations
Self-Supervised Disentanglement by Leveraging Structure in Data Augmentations
Cian Eastwood
Julius von Kügelgen
Linus Ericsson
Diane Bouchacourt
Pascal Vincent
Bernhard Schölkopf
Mark Ibrahim
34
10
0
15 Nov 2023
Causal Discovery under Latent Class Confounding
Causal Discovery under Latent Class Confounding
Bijan Mazaheri
Spencer Gordon
Y. Rabani
Leonard J. Schulman
CML
18
2
0
13 Nov 2023
Multi-View Causal Representation Learning with Partial Observability
Multi-View Causal Representation Learning with Partial Observability
Dingling Yao
Danru Xu
Sébastien Lachapelle
Sara Magliacane
Perouz Taslakian
Georg Martius
Julius von Kügelgen
Francesco Locatello
CML
37
30
0
07 Nov 2023
Complete collineations for maximum likelihood estimation
Complete collineations for maximum likelihood estimation
Gergely Bérczi
Eloise Hamilton
Philipp Reichenbach
A. Seigal
29
0
0
06 Nov 2023
Identifying Linearly-Mixed Causal Representations from Multi-Node
  Interventions
Identifying Linearly-Mixed Causal Representations from Multi-Node Interventions
Simon Bing
Urmi Ninad
Jonas Wahl
Jakob Runge
CML
15
5
0
05 Nov 2023
Object-centric architectures enable efficient causal representation
  learning
Object-centric architectures enable efficient causal representation learning
Amin Mansouri
Jason S. Hartford
Yan Zhang
Yoshua Bengio
CML
OCL
OOD
23
15
0
29 Oct 2023
Causal disentanglement of multimodal data
Causal disentanglement of multimodal data
Elise Walker
Jonas A. Actor
Carianne Martinez
Nathaniel Trask
CML
11
1
0
27 Oct 2023
Causal Representation Learning Made Identifiable by Grouping of
  Observational Variables
Causal Representation Learning Made Identifiable by Grouping of Observational Variables
H. Morioka
Aapo Hyvarinen
OOD
CML
BDL
27
9
0
24 Oct 2023
Identifiable Latent Polynomial Causal Models Through the Lens of Change
Identifiable Latent Polynomial Causal Models Through the Lens of Change
Yuhang Liu
Zhen Zhang
Dong Gong
Mingming Gong
Biwei Huang
A. Hengel
Kun Zhang
Javen Qinfeng Shi
22
13
0
24 Oct 2023
General Identifiability and Achievability for Causal Representation
  Learning
General Identifiability and Achievability for Causal Representation Learning
Burak Varici
Emre Acartürk
Karthikeyan Shanmugam
A. Tajer
CML
35
16
0
24 Oct 2023
From Identifiable Causal Representations to Controllable Counterfactual
  Generation: A Survey on Causal Generative Modeling
From Identifiable Causal Representations to Controllable Counterfactual Generation: A Survey on Causal Generative Modeling
Aneesh Komanduri
Xintao Wu
Yongkai Wu
Feng Chen
CML
OOD
31
7
0
17 Oct 2023
Identifying Representations for Intervention Extrapolation
Identifying Representations for Intervention Extrapolation
Sorawit Saengkyongam
Ezgi Ozyilkan
Pradeep Ravikumar
Niklas Pfister
Jonas Peters
CML
OOD
16
14
0
06 Oct 2023
Multi-Domain Causal Representation Learning via Weak Distributional
  Invariances
Multi-Domain Causal Representation Learning via Weak Distributional Invariances
Kartik Ahuja
Amin Mansouri
Yixin Wang
CML
OOD
21
10
0
04 Oct 2023
Identifiability Guarantees for Causal Disentanglement from Soft
  Interventions
Identifiability Guarantees for Causal Disentanglement from Soft Interventions
Jiaqi Zhang
C. Squires
Kristjan Greenewald
Akash Srivastava
Karthikeyan Shanmugam
Caroline Uhler
CML
51
53
0
12 Jul 2023
Additive Decoders for Latent Variables Identification and
  Cartesian-Product Extrapolation
Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation
Sébastien Lachapelle
Divyat Mahajan
Ioannis Mitliagkas
Simon Lacoste-Julien
34
25
0
05 Jul 2023
Towards Characterizing Domain Counterfactuals For Invertible Latent
  Causal Models
Towards Characterizing Domain Counterfactuals For Invertible Latent Causal Models
Zeyu Zhou
Ruqi Bai
Sean Kulinski
Murat Kocaoglu
David I. Inouye
CML
24
1
0
20 Jun 2023
Learning nonparametric latent causal graphs with unknown interventions
Learning nonparametric latent causal graphs with unknown interventions
Yibo Jiang
Bryon Aragam
CML
32
24
0
05 Jun 2023
Learning Linear Causal Representations from Interventions under General
  Nonlinear Mixing
Learning Linear Causal Representations from Interventions under General Nonlinear Mixing
Simon Buchholz
Goutham Rajendran
Elan Rosenfeld
Bryon Aragam
Bernhard Schölkopf
Pradeep Ravikumar
CML
34
57
0
04 Jun 2023
Nonparametric Identifiability of Causal Representations from Unknown
  Interventions
Nonparametric Identifiability of Causal Representations from Unknown Interventions
Julius von Kügelgen
M. Besserve
Wendong Liang
Luigi Gresele
Armin Kekić
Elias Bareinboim
David M. Blei
Bernhard Schölkopf
CML
18
56
0
01 Jun 2023
Neuro-Causal Factor Analysis
Neuro-Causal Factor Analysis
Alex Markham
Ming-Yu Liu
Bryon Aragam
Liam Solus
CML
20
3
0
31 May 2023
Causal Component Analysis
Causal Component Analysis
Wendong Liang
Armin Kekić
Julius von Kügelgen
Simon Buchholz
M. Besserve
Luigi Gresele
Bernhard Schölkopf
CML
29
36
0
26 May 2023
Learning Causal Graphs via Monotone Triangular Transport Maps
Learning Causal Graphs via Monotone Triangular Transport Maps
S. Akbari
Luca Ganassali
Negar Kiyavash
OT
CML
16
8
0
26 May 2023
Leveraging sparse and shared feature activations for disentangled
  representation learning
Leveraging sparse and shared feature activations for disentangled representation learning
Marco Fumero
F. Wenzel
L. Zancato
Alessandro Achille
Emanuele Rodolà
Stefano Soatto
Bernhard Schölkopf
Francesco Locatello
OOD
DRL
34
22
0
17 Apr 2023
Unpaired Multi-Domain Causal Representation Learning
Unpaired Multi-Domain Causal Representation Learning
Nils Sturma
C. Squires
Mathias Drton
Caroline Uhler
OOD
CML
27
20
0
02 Feb 2023
Score-based Causal Representation Learning with Interventions
Score-based Causal Representation Learning with Interventions
Burak Varici
Emre Acartürk
Karthikeyan Shanmugam
Abhishek Kumar
A. Tajer
CML
27
38
0
19 Jan 2023
Interventional Causal Representation Learning
Interventional Causal Representation Learning
Kartik Ahuja
Divyat Mahajan
Yixin Wang
Yoshua Bengio
CML
39
83
0
24 Sep 2022
Contrastive Learning Inverts the Data Generating Process
Contrastive Learning Inverts the Data Generating Process
Roland S. Zimmermann
Yash Sharma
Steffen Schneider
Matthias Bethge
Wieland Brendel
SSL
236
207
0
17 Feb 2021
1