ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.16886
  4. Cited By
A Unifying Theory of Distance from Calibration

A Unifying Theory of Distance from Calibration

30 November 2022
Jarosław Błasiok
Parikshit Gopalan
Lunjia Hu
Preetum Nakkiran
ArXivPDFHTML

Papers citing "A Unifying Theory of Distance from Calibration"

23 / 23 papers shown
Title
Three Types of Calibration with Properties and their Semantic and Formal Relationships
Three Types of Calibration with Properties and their Semantic and Formal Relationships
Rabanus Derr
Jessie Finocchiaro
Robert C. Williamson
31
0
0
25 Apr 2025
How Global Calibration Strengthens Multiaccuracy
How Global Calibration Strengthens Multiaccuracy
Sílvia Casacuberta
Parikshit Gopalan
Varun Kanade
Omer Reingold
22
0
0
21 Apr 2025
Combining Priors with Experience: Confidence Calibration Based on Binomial Process Modeling
Combining Priors with Experience: Confidence Calibration Based on Binomial Process Modeling
Jinzong Dong
Zhaohui Jiang
Dong Pan
Haoyang Yu
49
0
0
14 Dec 2024
Learning to Route LLMs with Confidence Tokens
Learning to Route LLMs with Confidence Tokens
Yu-Neng Chuang
Helen Zhou
Prathusha Kameswara Sarma
Parikshit Gopalan
John Boccio
Sara Bolouki
Xia Hu
25
0
0
17 Oct 2024
Towards Data-Centric RLHF: Simple Metrics for Preference Dataset
  Comparison
Towards Data-Centric RLHF: Simple Metrics for Preference Dataset Comparison
Judy Hanwen Shen
Archit Sharma
Jun Qin
37
4
0
15 Sep 2024
When is Multicalibration Post-Processing Necessary?
When is Multicalibration Post-Processing Necessary?
Dutch Hansen
Siddartha Devic
Preetum Nakkiran
Vatsal Sharan
31
4
0
10 Jun 2024
Bridging Multicalibration and Out-of-distribution Generalization Beyond
  Covariate Shift
Bridging Multicalibration and Out-of-distribution Generalization Beyond Covariate Shift
Jiayun Wu
Jiashuo Liu
Peng Cui
Zhiwei Steven Wu
22
1
0
02 Jun 2024
Optimal Multiclass U-Calibration Error and Beyond
Optimal Multiclass U-Calibration Error and Beyond
Haipeng Luo
Spandan Senapati
Vatsal Sharan
16
4
0
28 May 2024
Conformal Prediction for Natural Language Processing: A Survey
Conformal Prediction for Natural Language Processing: A Survey
Margarida M. Campos
António Farinhas
Chrysoula Zerva
Mário A. T. Figueiredo
André F. T. Martins
AI4CE
38
13
0
03 May 2024
Predict to Minimize Swap Regret for All Payoff-Bounded Tasks
Predict to Minimize Swap Regret for All Payoff-Bounded Tasks
Lunjia Hu
Yifan Wu
27
2
0
21 Apr 2024
Testing Calibration in Nearly-Linear Time
Testing Calibration in Nearly-Linear Time
Lunjia Hu
A. Jambulapati
Kevin Tian
Chutong Yang
19
0
0
20 Feb 2024
On Computationally Efficient Multi-Class Calibration
On Computationally Efficient Multi-Class Calibration
Parikshit Gopalan
Lunjia Hu
G. Rothblum
12
6
0
12 Feb 2024
Kandinsky Conformal Prediction: Efficient Calibration of Image
  Segmentation Algorithms
Kandinsky Conformal Prediction: Efficient Calibration of Image Segmentation Algorithms
J. Brunekreef
Eric Marcus
Ray Sheombarsing
J. Sonke
Jonas Teuwen
19
3
0
20 Nov 2023
Smooth ECE: Principled Reliability Diagrams via Kernel Smoothing
Smooth ECE: Principled Reliability Diagrams via Kernel Smoothing
Jarosław Błasiok
Preetum Nakkiran
UQCV
30
20
0
21 Sep 2023
Set Learning for Accurate and Calibrated Models
Set Learning for Accurate and Calibrated Models
Lukas Muttenthaler
Robert A. Vandermeulen
Qiuyi Zhang
Thomas Unterthiner
Klaus-Robert Muller
21
2
0
05 Jul 2023
U-Calibration: Forecasting for an Unknown Agent
U-Calibration: Forecasting for an Unknown Agent
Robert D. Kleinberg
R. Leme
Jon Schneider
Yifeng Teng
AI4TS
22
19
0
30 Jun 2023
On the Limitations of Temperature Scaling for Distributions with
  Overlaps
On the Limitations of Temperature Scaling for Distributions with Overlaps
Muthuraman Chidambaram
Rong Ge
UQCV
19
3
0
01 Jun 2023
When Does Optimizing a Proper Loss Yield Calibration?
When Does Optimizing a Proper Loss Yield Calibration?
Jarosław Błasiok
Parikshit Gopalan
Lunjia Hu
Preetum Nakkiran
15
22
0
30 May 2023
Minimum-Risk Recalibration of Classifiers
Minimum-Risk Recalibration of Classifiers
Zeyu Sun
Dogyoon Song
Alfred Hero
15
5
0
18 May 2023
Loss Minimization Yields Multicalibration for Large Neural Networks
Loss Minimization Yields Multicalibration for Large Neural Networks
Jarosław Błasiok
Parikshit Gopalan
Lunjia Hu
Adam Tauman Kalai
Preetum Nakkiran
FaML
UQCV
33
10
0
19 Apr 2023
An Operational Perspective to Fairness Interventions: Where and How to
  Intervene
An Operational Perspective to Fairness Interventions: Where and How to Intervene
Brian Hsu
Xiaotong Chen
Ying Han
Hongseok Namkoong
Kinjal Basu
11
1
0
03 Feb 2023
On the Within-Group Fairness of Screening Classifiers
On the Within-Group Fairness of Screening Classifiers
Nastaran Okati
Stratis Tsirtsis
Manuel Gomez Rodriguez
22
1
0
31 Jan 2023
Metrics of calibration for probabilistic predictions
Metrics of calibration for probabilistic predictions
Imanol Arrieta Ibarra
Paman Gujral
Jonathan Tannen
M. Tygert
Cherie Xu
40
20
0
19 May 2022
1