Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.02042
Cited By
Refiner: Data Refining against Gradient Leakage Attacks in Federated Learning
5 December 2022
Mingyuan Fan
Cen Chen
Chengyu Wang
Ximeng Liu
Wenmeng Zhou
Jun Huang
AAML
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Refiner: Data Refining against Gradient Leakage Attacks in Federated Learning"
4 / 4 papers shown
Title
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
139
684
0
31 Jan 2021
FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and Quantization
Amirhossein Reisizadeh
Aryan Mokhtari
Hamed Hassani
Ali Jadbabaie
Ramtin Pedarsani
FedML
157
758
0
28 Sep 2019
A Survey on Deep Learning in Medical Image Analysis
G. Litjens
Thijs Kooi
B. Bejnordi
A. Setio
F. Ciompi
Mohsen Ghafoorian
Jeroen van der Laak
Bram van Ginneken
C. I. Sánchez
OOD
278
10,599
0
19 Feb 2017
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
282
39,170
0
01 Sep 2014
1