ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.02081
  4. Cited By
YolOOD: Utilizing Object Detection Concepts for Multi-Label
  Out-of-Distribution Detection

YolOOD: Utilizing Object Detection Concepts for Multi-Label Out-of-Distribution Detection

5 December 2022
Alon Zolfi
Guy Amit
A. Baras
Satoru Koda
I. Morikawa
Yuval Elovici
A. Shabtai
    OODD
ArXivPDFHTML

Papers citing "YolOOD: Utilizing Object Detection Concepts for Multi-Label Out-of-Distribution Detection"

3 / 3 papers shown
Title
On the Importance of Gradients for Detecting Distributional Shifts in
  the Wild
On the Importance of Gradients for Detecting Distributional Shifts in the Wild
Rui Huang
Andrew Geng
Yixuan Li
186
328
0
01 Oct 2021
Localizing Objects with Self-Supervised Transformers and no Labels
Localizing Objects with Self-Supervised Transformers and no Labels
Oriane Siméoni
Gilles Puy
Huy V. Vo
Simon Roburin
Spyros Gidaris
Andrei Bursuc
P. Pérez
Renaud Marlet
Jean Ponce
ViT
172
196
0
29 Sep 2021
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
296
39,194
0
01 Sep 2014
1