ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.04084
  4. Cited By
Federated Learning for Inference at Anytime and Anywhere

Federated Learning for Inference at Anytime and Anywhere

8 December 2022
Zicheng Liu
Da Li
Javier Fernandez-Marques
Stefanos Laskaridis
Yan Gao
L. Dudziak
Stan Z. Li
S. Hu
Timothy M. Hospedales
    FedML
ArXivPDFHTML

Papers citing "Federated Learning for Inference at Anytime and Anywhere"

9 / 9 papers shown
Title
Federated Large Language Models: Current Progress and Future Directions
Federated Large Language Models: Current Progress and Future Directions
Yuhang Yao
Jianyi Zhang
Junda Wu
Chengkai Huang
Yu Xia
...
Ang Li
Lina Yao
Julian McAuley
Yiran Chen
Carlee Joe-Wong
FedML
AIFin
61
8
0
24 Sep 2024
Maestro: Uncovering Low-Rank Structures via Trainable Decomposition
Maestro: Uncovering Low-Rank Structures via Trainable Decomposition
Samuel Horváth
Stefanos Laskaridis
Shashank Rajput
Hongyi Wang
BDL
26
4
0
28 Aug 2023
FedYolo: Augmenting Federated Learning with Pretrained Transformers
FedYolo: Augmenting Federated Learning with Pretrained Transformers
Xuechen Zhang
Mingchen Li
Xiangyu Chang
Jiasi Chen
A. Roy-Chowdhury
A. Suresh
Samet Oymak
FedML
18
7
0
10 Jul 2023
On the Efficacy of Differentially Private Few-shot Image Classification
On the Efficacy of Differentially Private Few-shot Image Classification
Marlon Tobaben
Aliaksandra Shysheya
J. Bronskill
Andrew J. Paverd
Shruti Tople
Santiago Zanella Béguelin
Richard E. Turner
Antti Honkela
12
11
0
02 Feb 2023
Federated Progressive Sparsification (Purge, Merge, Tune)+
Federated Progressive Sparsification (Purge, Merge, Tune)+
Dimitris Stripelis
Umang Gupta
Greg Ver Steeg
J. Ambite
FedML
13
9
0
26 Apr 2022
Residual Adapters for Parameter-Efficient ASR Adaptation to Atypical and
  Accented Speech
Residual Adapters for Parameter-Efficient ASR Adaptation to Atypical and Accented Speech
Katrin Tomanek
Vicky Zayats
Dirk Padfield
K. Vaillancourt
Fadi Biadsy
51
57
0
14 Sep 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
280
3,835
0
18 Apr 2021
FjORD: Fair and Accurate Federated Learning under heterogeneous targets
  with Ordered Dropout
FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout
Samuel Horváth
Stefanos Laskaridis
Mario Almeida
Ilias Leondiadis
Stylianos I. Venieris
Nicholas D. Lane
176
267
0
26 Feb 2021
It's always personal: Using Early Exits for Efficient On-Device CNN
  Personalisation
It's always personal: Using Early Exits for Efficient On-Device CNN Personalisation
Ilias Leontiadis
Stefanos Laskaridis
Stylianos I. Venieris
Nicholas D. Lane
63
29
0
02 Feb 2021
1