Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.04090
Cited By
Exploiting Completeness and Uncertainty of Pseudo Labels for Weakly Supervised Video Anomaly Detection
8 December 2022
Chen Zhang
Guorong Li
Yuankai Qi
Shuhui Wang
Laiyun Qing
Qingming Huang
Ming-Hsuan Yang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Exploiting Completeness and Uncertainty of Pseudo Labels for Weakly Supervised Video Anomaly Detection"
6 / 6 papers shown
Title
ProDisc-VAD: An Efficient System for Weakly-Supervised Anomaly Detection in Video Surveillance Applications
Tao Zhu
Qi Yu
Xinru Dong
Shiyu Li
Yue Liu
Jinlong Jiang
Lei Shu
15
0
0
04 May 2025
Deep Learning for Video Anomaly Detection: A Review
Peng Wu
Chengyu Pan
Yuting Yan
Guansong Pang
Peng Wang
Yanning Zhang
VLM
AI4TS
34
6
0
09 Sep 2024
A Lightweight Video Anomaly Detection Model with Weak Supervision and Adaptive Instance Selection
Yang Wang
Jiaogen Zhou
Jihong Guan
13
3
0
09 Oct 2023
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning
Mamshad Nayeem Rizve
Kevin Duarte
Y. S. Rawat
M. Shah
200
501
0
15 Jan 2021
Confidence Regularized Self-Training
Yang Zou
Zhiding Yu
Xiaofeng Liu
B. Kumar
Jinsong Wang
207
783
0
26 Aug 2019
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
1