Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.05517
Cited By
SchNetPack 2.0: A neural network toolbox for atomistic machine learning
11 December 2022
Kristof T. Schütt
Stefaan S. P. Hessmann
Niklas W. A. Gebauer
Jonas Lederer
M. Gastegger
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SchNetPack 2.0: A neural network toolbox for atomistic machine learning"
8 / 8 papers shown
Title
chemtrain: Learning Deep Potential Models via Automatic Differentiation and Statistical Physics
Paul Fuchs
Stephan Thaler
Sebastien Röcken
J. Zavadlav
DiffM
70
6
0
28 Aug 2024
FeNNol: an Efficient and Flexible Library for Building Force-field-enhanced Neural Network Potentials
Thomas Plé
Olivier Adjoua
Louis Lagardère
Jean‐Philip Piquemal
30
8
0
02 May 2024
Multiscale Hodge Scattering Networks for Data Analysis
Naoki Saito
Stefan C. Schonsheck
Eugene Shvarts
32
1
0
17 Nov 2023
Accurate Machine Learned Quantum-Mechanical Force Fields for Biomolecular Simulations
Oliver T. Unke
M. Stohr
Stefan Ganscha
Thomas Unterthiner
Hartmut Maennel
...
Daniel Ahlin
M. Gastegger
L. M. Sandonas
A. Tkatchenko
Klaus-Robert Muller
AI4CE
35
18
0
17 May 2022
Inverse design of 3d molecular structures with conditional generative neural networks
Niklas W. A. Gebauer
M. Gastegger
Stefaan S. P. Hessmann
Klaus-Robert Muller
Kristof T. Schütt
AI4CE
187
166
0
10 Sep 2021
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
158
246
0
01 May 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
203
1,238
0
08 Jan 2021
Deep neural network solution of the electronic Schrödinger equation
J. Hermann
Zeno Schätzle
Frank Noé
149
446
0
16 Sep 2019
1