Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.07118
Cited By
Uncertainty Quantification for Deep Neural Networks: An Empirical Comparison and Usage Guidelines
14 December 2022
Michael Weiss
Paolo Tonella
BDL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Uncertainty Quantification for Deep Neural Networks: An Empirical Comparison and Usage Guidelines"
6 / 6 papers shown
Title
A Closer Look at AUROC and AUPRC under Class Imbalance
Matthew B. A. McDermott
Lasse Hyldig Hansen
Haoran Zhang
Giovanni Angelotti
Jack Gallifant
36
31
0
11 Jan 2024
Generating and Detecting True Ambiguity: A Forgotten Danger in DNN Supervision Testing
Michael Weiss
A. Gómez
Paolo Tonella
AAML
13
6
0
21 Jul 2022
Unsolved Problems in ML Safety
Dan Hendrycks
Nicholas Carlini
John Schulman
Jacob Steinhardt
186
273
0
28 Sep 2021
Fail-Safe Execution of Deep Learning based Systems through Uncertainty Monitoring
Michael Weiss
Paolo Tonella
AAML
45
29
0
01 Feb 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1