Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.07959
Cited By
Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls
15 December 2022
Stephan Thaler
Gregor Doehner
J. Zavadlav
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls"
5 / 5 papers shown
Title
High Accuracy Uncertainty-Aware Interatomic Force Modeling with Equivariant Bayesian Neural Networks
Tim Rensmeyer
Benjamin Craig
D. Kramer
Oliver Niggemann
BDL
22
3
0
05 Apr 2023
Uncertainty Toolbox: an Open-Source Library for Assessing, Visualizing, and Improving Uncertainty Quantification
Youngseog Chung
I. Char
Han Guo
J. Schneider
W. Neiswanger
30
70
0
21 Sep 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
192
1,232
0
08 Jan 2021
Coarse Graining Molecular Dynamics with Graph Neural Networks
B. Husic
N. Charron
Dominik Lemm
Jiang Wang
Adria Pérez
...
Yaoyi Chen
Simon Olsson
Gianni de Fabritiis
Frank Noé
C. Clementi
AI4CE
29
158
0
22 Jul 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,660
0
05 Dec 2016
1