ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.09368
  4. Cited By
TAS-NIR: A VIS+NIR Dataset for Fine-grained Semantic Segmentation in
  Unstructured Outdoor Environments

TAS-NIR: A VIS+NIR Dataset for Fine-grained Semantic Segmentation in Unstructured Outdoor Environments

19 December 2022
Peter Mortimer
Hans-Joachim Wuensche
ArXivPDFHTML

Papers citing "TAS-NIR: A VIS+NIR Dataset for Fine-grained Semantic Segmentation in Unstructured Outdoor Environments"

6 / 6 papers shown
Title
Excavating in the Wild: The GOOSE-Ex Dataset for Semantic Segmentation
Excavating in the Wild: The GOOSE-Ex Dataset for Semantic Segmentation
Raphael Hagmanns
Peter Mortimer
Miguel Granero
T. Luettel
J. Petereit
31
0
0
27 Sep 2024
Pix2Next: Leveraging Vision Foundation Models for RGB to NIR Image Translation
Pix2Next: Leveraging Vision Foundation Models for RGB to NIR Image Translation
Youngwan Jin
Incheol Park
Hanbin Song
Hyeongjin Ju
Yagiz Nalcakan
Shiho Kim
ViT
29
2
0
25 Sep 2024
Open-sourced Data Ecosystem in Autonomous Driving: the Present and
  Future
Open-sourced Data Ecosystem in Autonomous Driving: the Present and Future
Hongyang Li
Yang Li
Huijie Wang
Jia Zeng
Huilin Xu
...
Kai Yan
Beipeng Mu
Zhihui Peng
Shaoqing Ren
Yu Qiao
24
24
0
06 Dec 2023
What a MESS: Multi-Domain Evaluation of Zero-Shot Semantic Segmentation
What a MESS: Multi-Domain Evaluation of Zero-Shot Semantic Segmentation
Benedikt Blumenstiel
Johannes Jakubik
Hilde Kuhne
Michael Vossing
VLM
32
15
0
27 Jun 2023
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
273
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1