ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.10400
  4. Cited By
Contrastive Learning Reduces Hallucination in Conversations

Contrastive Learning Reduces Hallucination in Conversations

20 December 2022
Weiwei Sun
Zhengliang Shi
Shen Gao
Pengjie Ren
Maarten de Rijke
Z. Ren
ArXivPDFHTML

Papers citing "Contrastive Learning Reduces Hallucination in Conversations"

13 / 13 papers shown
Title
Oreo: A Plug-in Context Reconstructor to Enhance Retrieval-Augmented Generation
Oreo: A Plug-in Context Reconstructor to Enhance Retrieval-Augmented Generation
Sha Li
Naren Ramakrishnan
RALM
KELM
145
1
0
18 Feb 2025
Coarse-to-Fine Highlighting: Reducing Knowledge Hallucination in Large
  Language Models
Coarse-to-Fine Highlighting: Reducing Knowledge Hallucination in Large Language Models
Qitan Lv
Jie Wang
Hanzhu Chen
Bin Li
Yongdong Zhang
Feng Wu
HILM
17
3
0
19 Oct 2024
From Matching to Generation: A Survey on Generative Information Retrieval
From Matching to Generation: A Survey on Generative Information Retrieval
Xiaoxi Li
Jiajie Jin
Yujia Zhou
Yuyao Zhang
Peitian Zhang
Yutao Zhu
Zhicheng Dou
3DV
54
36
0
23 Apr 2024
Large Language Models for Conducting Advanced Text Analytics Information
  Systems Research
Large Language Models for Conducting Advanced Text Analytics Information Systems Research
Benjamin Ampel
Chi-Heng Yang
J. Hu
Hsinchun Chen
12
7
0
27 Dec 2023
MasterKey: Automated Jailbreak Across Multiple Large Language Model
  Chatbots
MasterKey: Automated Jailbreak Across Multiple Large Language Model Chatbots
Gelei Deng
Yi Liu
Yuekang Li
Kailong Wang
Ying Zhang
Zefeng Li
Haoyu Wang
Tianwei Zhang
Yang Liu
SILM
17
118
0
16 Jul 2023
The Scope of In-Context Learning for the Extraction of Medical Temporal
  Constraints
The Scope of In-Context Learning for the Extraction of Medical Temporal Constraints
Parker Seegmiller
Joseph Gatto
Madhusudan Basak
Diane J. Cook
Hassan Ghasemzadeh
John A. Stankovic
S. Preum
11
1
0
16 Mar 2023
Exploring Prompt-based Few-shot Learning for Grounded Dialog Generation
Exploring Prompt-based Few-shot Learning for Grounded Dialog Generation
Chujie Zheng
Minlie Huang
51
44
0
14 Sep 2021
Knowledge Enhanced Fine-Tuning for Better Handling Unseen Entities in
  Dialogue Generation
Knowledge Enhanced Fine-Tuning for Better Handling Unseen Entities in Dialogue Generation
Leyang Cui
Yu-Huan Wu
Shujie Liu
Yue Zhang
45
22
0
12 Sep 2021
Substructure Substitution: Structured Data Augmentation for NLP
Substructure Substitution: Structured Data Augmentation for NLP
Freda Shi
Karen Livescu
Kevin Gimpel
172
39
0
02 Jan 2021
Knowledge-Grounded Dialogue Generation with Pre-trained Language Models
Knowledge-Grounded Dialogue Generation with Pre-trained Language Models
Xueliang Zhao
Wei Yu Wu
Can Xu
Chongyang Tao
Dongyan Zhao
Rui Yan
167
181
0
17 Oct 2020
MixCo: Mix-up Contrastive Learning for Visual Representation
MixCo: Mix-up Contrastive Learning for Visual Representation
Sungnyun Kim
Gihun Lee
Sangmin Bae
Seyoung Yun
SSL
89
69
0
13 Oct 2020
Megatron-LM: Training Multi-Billion Parameter Language Models Using
  Model Parallelism
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
M. Shoeybi
M. Patwary
Raul Puri
P. LeGresley
Jared Casper
Bryan Catanzaro
MoE
243
1,791
0
17 Sep 2019
Language Models as Knowledge Bases?
Language Models as Knowledge Bases?
Fabio Petroni
Tim Rocktaschel
Patrick Lewis
A. Bakhtin
Yuxiang Wu
Alexander H. Miller
Sebastian Riedel
KELM
AI4MH
393
2,216
0
03 Sep 2019
1