ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.14532
  4. Cited By
Scale-MAE: A Scale-Aware Masked Autoencoder for Multiscale Geospatial
  Representation Learning

Scale-MAE: A Scale-Aware Masked Autoencoder for Multiscale Geospatial Representation Learning

30 December 2022
Colorado Reed
Ritwik Gupta
Shufan Li
S. Brockman
Christopher Funk
Brian Clipp
Kurt Keutzer
Salvatore Candido
M. Uyttendaele
Trevor Darrell
ArXivPDFHTML

Papers citing "Scale-MAE: A Scale-Aware Masked Autoencoder for Multiscale Geospatial Representation Learning"

5 / 5 papers shown
Title
PyViT-FUSE: A Foundation Model for Multi-Sensor Earth Observation Data
PyViT-FUSE: A Foundation Model for Multi-Sensor Earth Observation Data
Manuel Weber
Carly Beneke
ViT
34
8
0
26 Apr 2025
EarthNets: Empowering AI in Earth Observation
EarthNets: Empowering AI in Earth Observation
Zhitong Xiong
Fahong Zhang
Yi Wang
Yilei Shi
Xiao Xiang Zhu
64
70
0
10 Oct 2022
Point-M2AE: Multi-scale Masked Autoencoders for Hierarchical Point Cloud
  Pre-training
Point-M2AE: Multi-scale Masked Autoencoders for Hierarchical Point Cloud Pre-training
Renrui Zhang
Ziyu Guo
Rongyao Fang
Bingyan Zhao
Dong Wang
Yu Qiao
Hongsheng Li
Peng Gao
3DPC
142
171
0
28 May 2022
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
233
5,353
0
11 Nov 2021
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
257
4,299
0
29 Apr 2021
1