ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.00537
  4. Cited By
Posterior Collapse and Latent Variable Non-identifiability

Posterior Collapse and Latent Variable Non-identifiability

Neural Information Processing Systems (NeurIPS), 2023
2 January 2023
Yixin Wang
David M. Blei
John P. Cunningham
    CMLDRL
ArXiv (abs)PDFHTML

Papers citing "Posterior Collapse and Latent Variable Non-identifiability"

26 / 26 papers shown
Title
Disentangling Score Content and Performance Style for Joint Piano Rendering and Transcription
Disentangling Score Content and Performance Style for Joint Piano Rendering and Transcription
Wei Zeng
Junchuan Zhao
Ye Wang
92
0
0
28 Sep 2025
Global Variational Inference Enhanced Robust Domain Adaptation
Global Variational Inference Enhanced Robust Domain Adaptation
Lingkun Luo
Shiqiang Hu
Liming Chen
OOD
116
0
0
04 Jul 2025
DeepRV: Accelerating spatiotemporal inference with pre-trained neural priors
DeepRV: Accelerating spatiotemporal inference with pre-trained neural priors
Jhonathan Navott
Daniel Jenson
Seth Flaxman
Elizaveta Semenova
232
0
0
27 Mar 2025
DeCaFlow: A deconfounding causal generative model
DeCaFlow: A deconfounding causal generative model
Alejandro Almodóvar
Adrián Javaloy
J. Parras
Santiago Zazo
Isabel Valera
CML
317
0
0
19 Mar 2025
Video prediction using score-based conditional density estimation
Video prediction using score-based conditional density estimation
P. Fiquet
Eero P. Simoncelli
AI4TS
128
0
0
30 Oct 2024
Transferring disentangled representations: bridging the gap between synthetic and real images
Transferring disentangled representations: bridging the gap between synthetic and real imagesNeural Information Processing Systems (NeurIPS), 2024
Jacopo Dapueto
Nicoletta Noceti
Francesca Odone
OOD
386
2
0
26 Sep 2024
Remove Symmetries to Control Model Expressivity and Improve Optimization
Remove Symmetries to Control Model Expressivity and Improve OptimizationInternational Conference on Learning Representations (ICLR), 2024
Liu Ziyin
Yizhou Xu
Isaac Chuang
AAML
453
4
0
28 Aug 2024
Particle Semi-Implicit Variational Inference
Particle Semi-Implicit Variational Inference
Jen Ning Lim
A. M. Johansen
339
11
0
30 Jun 2024
Preventing Model Collapse in Gaussian Process Latent Variable Models
Preventing Model Collapse in Gaussian Process Latent Variable ModelsInternational Conference on Machine Learning (ICML), 2024
Ying Li
Zhidi Lin
Feng Yin
Michael Minyi Zhang
VLM
209
3
0
02 Apr 2024
Towards Model-Agnostic Posterior Approximation for Fast and Accurate
  Variational Autoencoders
Towards Model-Agnostic Posterior Approximation for Fast and Accurate Variational Autoencoders
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
DRL
356
0
0
13 Mar 2024
Nonparametric Automatic Differentiation Variational Inference with
  Spline Approximation
Nonparametric Automatic Differentiation Variational Inference with Spline ApproximationInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2024
Yuda Shao
Shan Yu
Tianshu Feng
192
2
0
10 Mar 2024
Learning Interpretable Concepts: Unifying Causal Representation Learning
  and Foundation Models
Learning Interpretable Concepts: Unifying Causal Representation Learning and Foundation Models
Goutham Rajendran
Simon Buchholz
Bryon Aragam
Bernhard Schölkopf
Pradeep Ravikumar
AI4CE
366
28
0
14 Feb 2024
Bayesian Transfer Learning
Bayesian Transfer Learning
Piotr M. Suder
Jason Xu
David B. Dunson
231
11
0
20 Dec 2023
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Mouad El Bouchattaoui
Myriam Tami
Benoit Lepetit
P. Cournède
CMLOOD
402
2
0
16 Oct 2023
Learning nonparametric latent causal graphs with unknown interventions
Learning nonparametric latent causal graphs with unknown interventionsNeural Information Processing Systems (NeurIPS), 2023
Yibo Jiang
Bryon Aragam
CML
238
28
0
05 Jun 2023
Controlling Posterior Collapse by an Inverse Lipschitz Constraint on the
  Decoder Network
Controlling Posterior Collapse by an Inverse Lipschitz Constraint on the Decoder NetworkInternational Conference on Machine Learning (ICML), 2023
Yuri Kinoshita
Kenta Oono
Kenji Fukumizu
Yuichi Yoshida
S. Maeda
DRLBDL
191
4
0
25 Apr 2023
Discouraging posterior collapse in hierarchical Variational Autoencoders
  using context
Discouraging posterior collapse in hierarchical Variational Autoencoders using context
Anna Kuzina
Jakub M. Tomczak
BDLDRL
301
1
0
20 Feb 2023
GFlowNet-EM for learning compositional latent variable models
GFlowNet-EM for learning compositional latent variable modelsInternational Conference on Machine Learning (ICML), 2023
J. E. Hu
Nikolay Malkin
Moksh Jain
Katie Everett
Alexandros Graikos
Yoshua Bengio
CoGe
223
45
0
13 Feb 2023
Language as a Latent Sequence: deep latent variable models for
  semi-supervised paraphrase generation
Language as a Latent Sequence: deep latent variable models for semi-supervised paraphrase generationAI Open (AO), 2023
Jialin Yu
Alexandra I. Cristea
Anoushka Harit
Zhongtian Sun
O. Aduragba
Lei Shi
Noura Al Moubayed
VLMBDLDRL
215
3
0
05 Jan 2023
On the detrimental effect of invariances in the likelihood for
  variational inference
On the detrimental effect of invariances in the likelihood for variational inferenceNeural Information Processing Systems (NeurIPS), 2022
Richard Kurle
R. Herbrich
Tim Januschowski
Bernie Wang
Jan Gasthaus
200
9
0
15 Sep 2022
Identifiability of deep generative models without auxiliary information
Identifiability of deep generative models without auxiliary informationNeural Information Processing Systems (NeurIPS), 2022
Bohdan Kivva
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
DRL
274
61
0
20 Jun 2022
Indeterminacy in Generative Models: Characterization and Strong
  Identifiability
Indeterminacy in Generative Models: Characterization and Strong IdentifiabilityInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Quanhan Xi
Benjamin Bloem-Reddy
292
30
0
02 Jun 2022
Posterior Collapse of a Linear Latent Variable Model
Posterior Collapse of a Linear Latent Variable ModelNeural Information Processing Systems (NeurIPS), 2022
Zihao Wang
Liu Ziyin
BDL
197
23
0
09 May 2022
Robust Policy Learning over Multiple Uncertainty Sets
Robust Policy Learning over Multiple Uncertainty SetsInternational Conference on Machine Learning (ICML), 2022
Annie Xie
Shagun Sodhani
Chelsea Finn
Joelle Pineau
Amy Zhang
OODOffRL
268
23
0
14 Feb 2022
Missing Data Imputation and Acquisition with Deep Hierarchical Models
  and Hamiltonian Monte Carlo
Missing Data Imputation and Acquisition with Deep Hierarchical Models and Hamiltonian Monte CarloNeural Information Processing Systems (NeurIPS), 2022
I. Peis
Chao Ma
José Miguel Hernández-Lobato
BDLDRL
412
21
0
09 Feb 2022
Deviance Matrix Factorization
Deviance Matrix FactorizationElectronic Journal of Statistics (EJS), 2021
Liang Wang
Luis Carvalho
102
8
0
12 Oct 2021
1