ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.03904
  4. Cited By
RedMule: A Mixed-Precision Matrix-Matrix Operation Engine for Flexible
  and Energy-Efficient On-Chip Linear Algebra and TinyML Training Acceleration

RedMule: A Mixed-Precision Matrix-Matrix Operation Engine for Flexible and Energy-Efficient On-Chip Linear Algebra and TinyML Training Acceleration

10 January 2023
Yvan Tortorella
L. Bertaccini
Luca Benini
D. Rossi
Francesco Conti
ArXivPDFHTML

Papers citing "RedMule: A Mixed-Precision Matrix-Matrix Operation Engine for Flexible and Energy-Efficient On-Chip Linear Algebra and TinyML Training Acceleration"

2 / 2 papers shown
Title
FP8 Formats for Deep Learning
FP8 Formats for Deep Learning
Paulius Micikevicius
Dusan Stosic
N. Burgess
Marius Cornea
Pradeep Dubey
...
Naveen Mellempudi
S. Oberman
M. Shoeybi
Michael Siu
Hao Wu
BDL
VLM
MQ
62
119
0
12 Sep 2022
A TinyML Platform for On-Device Continual Learning with Quantized Latent
  Replays
A TinyML Platform for On-Device Continual Learning with Quantized Latent Replays
Leonardo Ravaglia
Manuele Rusci
D. Nadalini
Alessandro Capotondi
Francesco Conti
Luca Benini
BDL
37
62
0
20 Oct 2021
1