Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2301.07609
Cited By
Physics-informed Information Field Theory for Modeling Physical Systems with Uncertainty Quantification
18 January 2023
A. Alberts
Ilias Bilionis
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Physics-informed Information Field Theory for Modeling Physical Systems with Uncertainty Quantification"
7 / 7 papers shown
Title
DGNO: A Novel Physics-aware Neural Operator for Solving Forward and Inverse PDE Problems based on Deep, Generative Probabilistic Modeling
Yaohua Zang
P. Koutsourelakis
AI4CE
52
0
0
10 Feb 2025
Auto-weighted Bayesian Physics-Informed Neural Networks and robust estimations for multitask inverse problems in pore-scale imaging of dissolution
S. Pérez
P. Poncet
17
3
0
24 Aug 2023
An information field theory approach to Bayesian state and parameter estimation in dynamical systems
Kairui Hao
Ilias Bilionis
4
4
0
03 Jun 2023
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
170
755
0
13 Mar 2020
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
NIFTY - Numerical Information Field Theory - a versatile Python library for signal inference
M. Selig
M. Bell
H. Junklewitz
N. Oppermann
M. Reinecke
M. Greiner
C. Pachajoa
T. Ensslin
55
62
0
18 Jan 2013
MCMC using Hamiltonian dynamics
Radford M. Neal
132
3,260
0
09 Jun 2012
1