ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.08117
  4. Cited By
Convergence beyond the over-parameterized regime using Rayleigh
  quotients

Convergence beyond the over-parameterized regime using Rayleigh quotients

19 January 2023
David A. R. Robin
Kevin Scaman
Marc Lelarge
ArXivPDFHTML

Papers citing "Convergence beyond the over-parameterized regime using Rayleigh quotients"

3 / 3 papers shown
Title
Recovery Guarantees of Unsupervised Neural Networks for Inverse Problems
  trained with Gradient Descent
Recovery Guarantees of Unsupervised Neural Networks for Inverse Problems trained with Gradient Descent
Nathan Buskulic
M. Fadili
Yvain Quéau
16
0
0
08 Mar 2024
Rethinking Gauss-Newton for learning over-parameterized models
Rethinking Gauss-Newton for learning over-parameterized models
Michael Arbel
Romain Menegaux
Pierre Wolinski
AI4CE
11
5
0
06 Feb 2023
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
133
1,198
0
16 Aug 2016
1