ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.08203
  4. Cited By
An SDE for Modeling SAM: Theory and Insights

An SDE for Modeling SAM: Theory and Insights

19 January 2023
Enea Monzio Compagnoni
Luca Biggio
Antonio Orvieto
F. Proske
Hans Kersting
Aurélien Lucchi
ArXivPDFHTML

Papers citing "An SDE for Modeling SAM: Theory and Insights"

11 / 11 papers shown
Title
Critical Influence of Overparameterization on Sharpness-aware Minimization
Critical Influence of Overparameterization on Sharpness-aware Minimization
Sungbin Shin
Dongyeop Lee
Maksym Andriushchenko
Namhoon Lee
AAML
39
1
0
29 Nov 2023
Practical Sharpness-Aware Minimization Cannot Converge All the Way to
  Optima
Practical Sharpness-Aware Minimization Cannot Converge All the Way to Optima
Dongkuk Si
Chulhee Yun
26
15
0
16 Jun 2023
How to escape sharp minima with random perturbations
How to escape sharp minima with random perturbations
Kwangjun Ahn
Ali Jadbabaie
S. Sra
ODL
22
6
0
25 May 2023
The Dynamics of Sharpness-Aware Minimization: Bouncing Across Ravines
  and Drifting Towards Wide Minima
The Dynamics of Sharpness-Aware Minimization: Bouncing Across Ravines and Drifting Towards Wide Minima
Peter L. Bartlett
Philip M. Long
Olivier Bousquet
63
34
0
04 Oct 2022
On the SDEs and Scaling Rules for Adaptive Gradient Algorithms
On the SDEs and Scaling Rules for Adaptive Gradient Algorithms
Sadhika Malladi
Kaifeng Lyu
A. Panigrahi
Sanjeev Arora
88
40
0
20 May 2022
Sharpness-Aware Minimization Improves Language Model Generalization
Sharpness-Aware Minimization Improves Language Model Generalization
Dara Bahri
H. Mobahi
Yi Tay
119
82
0
16 Oct 2021
Efficient Sharpness-aware Minimization for Improved Training of Neural
  Networks
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks
Jiawei Du
Hanshu Yan
Jiashi Feng
Joey Tianyi Zhou
Liangli Zhen
Rick Siow Mong Goh
Vincent Y. F. Tan
AAML
102
132
0
07 Oct 2021
Neural Mechanics: Symmetry and Broken Conservation Laws in Deep Learning
  Dynamics
Neural Mechanics: Symmetry and Broken Conservation Laws in Deep Learning Dynamics
D. Kunin
Javier Sagastuy-Breña
Surya Ganguli
Daniel L. K. Yamins
Hidenori Tanaka
97
77
0
08 Dec 2020
On the Convergence of Stochastic Gradient MCMC Algorithms with
  High-Order Integrators
On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators
Changyou Chen
Nan Ding
Lawrence Carin
30
158
0
21 Oct 2016
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
273
2,878
0
15 Sep 2016
A Differential Equation for Modeling Nesterov's Accelerated Gradient
  Method: Theory and Insights
A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights
Weijie Su
Stephen P. Boyd
Emmanuel J. Candes
97
1,150
0
04 Mar 2015
1