ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.10123
  4. Cited By
Inducing Point Allocation for Sparse Gaussian Processes in
  High-Throughput Bayesian Optimisation

Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation

24 January 2023
Henry B. Moss
Sebastian W. Ober
Victor Picheny
ArXivPDFHTML

Papers citing "Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation"

21 / 21 papers shown
Title
Koopman-Equivariant Gaussian Processes
Petar Bevanda
Max Beier
Armin Lederer
A. Capone
Stefan Sosnowski
Sandra Hirche
AI4TS
58
1
0
10 Feb 2025
Amortized Safe Active Learning for Real-Time Data Acquisition: Pretrained Neural Policies from Simulated Nonparametric Functions
Amortized Safe Active Learning for Real-Time Data Acquisition: Pretrained Neural Policies from Simulated Nonparametric Functions
Cen Li
Marc Toussaint
Barbara Rakitsch
Christoph Zimmer
OffRL
58
0
0
26 Jan 2025
Scalable Bayesian Optimization via Focalized Sparse Gaussian Processes
Scalable Bayesian Optimization via Focalized Sparse Gaussian Processes
Yunyue Wei
Vincent Zhuang
Saraswati Soedarmadji
Yanan Sui
34
0
0
31 Dec 2024
Bayesian Optimisation with Unknown Hyperparameters: Regret Bounds
  Logarithmically Closer to Optimal
Bayesian Optimisation with Unknown Hyperparameters: Regret Bounds Logarithmically Closer to Optimal
Juliusz Ziomek
Masaki Adachi
Michael A. Osborne
14
1
0
14 Oct 2024
SCORE: A 1D Reparameterization Technique to Break Bayesian
  Optimization's Curse of Dimensionality
SCORE: A 1D Reparameterization Technique to Break Bayesian Optimization's Curse of Dimensionality
Joseph Chakar
19
0
0
18 Jun 2024
Approximation-Aware Bayesian Optimization
Approximation-Aware Bayesian Optimization
N. Maus
Kyurae Kim
Geoff Pleiss
David Eriksson
John P. Cunningham
Jacob R. Gardner
19
1
0
06 Jun 2024
This Too Shall Pass: Removing Stale Observations in Dynamic Bayesian
  Optimization
This Too Shall Pass: Removing Stale Observations in Dynamic Bayesian Optimization
Anthony Bardou
Patrick Thiran
Giovanni Ranieri
19
1
0
23 May 2024
No-Regret Learning of Nash Equilibrium for Black-Box Games via Gaussian
  Processes
No-Regret Learning of Nash Equilibrium for Black-Box Games via Gaussian Processes
Minbiao Han
Fengxue Zhang
Yuxin Chen
24
2
0
14 May 2024
COMO: Compact Mapping and Odometry
COMO: Compact Mapping and Odometry
Eric Dexheimer
Andrew J. Davison
21
3
0
04 Apr 2024
Global Safe Sequential Learning via Efficient Knowledge Transfer
Global Safe Sequential Learning via Efficient Knowledge Transfer
Cen Li
Olaf Duennbier
Marc Toussaint
Barbara Rakitsch
Christoph Zimmer
31
1
0
22 Feb 2024
Motion Code: Robust Time series Classification and Forecasting via
  Sparse Variational Multi-Stochastic Processes Learning
Motion Code: Robust Time series Classification and Forecasting via Sparse Variational Multi-Stochastic Processes Learning
Chandrajit L. Bajaj
Minh Nguyen
AI4TS
22
0
0
21 Feb 2024
Combining additivity and active subspaces for high-dimensional Gaussian
  process modeling
Combining additivity and active subspaces for high-dimensional Gaussian process modeling
M. Binois
Victor Picheny
14
0
0
06 Feb 2024
Sparse Variational Student-t Processes
Sparse Variational Student-t Processes
Jian Xu
Delu Zeng
11
1
0
09 Dec 2023
Learning Regions of Interest for Bayesian Optimization with Adaptive
  Level-Set Estimation
Learning Regions of Interest for Bayesian Optimization with Adaptive Level-Set Estimation
Fengxue Zhang
Jialin Song
James Bowden
Alexander Ladd
Yisong Yue
Thomas A. Desautels
Yuxin Chen
25
6
0
25 Jul 2023
MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning
MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning
Adam X. Yang
Laurence Aitchison
Henry B. Moss
6
4
0
22 Feb 2023
Trieste: Efficiently Exploring The Depths of Black-box Functions with
  TensorFlow
Trieste: Efficiently Exploring The Depths of Black-box Functions with TensorFlow
Victor Picheny
Joel Berkeley
Henry B. Moss
Hrvoje Stojić
Uri Granta
...
Sergio Pascual-Diaz
Stratis Markou
Jixiang Qing
Nasrulloh Loka
Ivo Couckuyt
10
13
0
16 Feb 2023
GAUCHE: A Library for Gaussian Processes in Chemistry
GAUCHE: A Library for Gaussian Processes in Chemistry
Ryan-Rhys Griffiths
Leo Klarner
Henry B. Moss
Aditya Ravuri
Sang T. Truong
...
A. Lee
Bingqing Cheng
Alán Aspuru-Guzik
P. Schwaller
Jian Tang
GP
13
40
0
06 Dec 2022
Local Function Complexity for Active Learning via Mixture of Gaussian
  Processes
Local Function Complexity for Active Learning via Mixture of Gaussian Processes
Danny Panknin
Stefan Chmiela
Klaus-Robert Muller
Shinichi Nakajima
16
0
0
27 Feb 2019
Max-value Entropy Search for Efficient Bayesian Optimization
Max-value Entropy Search for Efficient Bayesian Optimization
Zi Wang
Stefanie Jegelka
110
357
0
06 Mar 2017
Local Gaussian process approximation for large computer experiments
Local Gaussian process approximation for large computer experiments
R. Gramacy
D. Apley
84
391
0
02 Mar 2013
Determinantal point processes for machine learning
Determinantal point processes for machine learning
Alex Kulesza
B. Taskar
146
1,045
0
25 Jul 2012
1